Op zoek naar de klepel

bij dezen en genen

Tag archief: evolutie

Een nieuw uiterst zelfzuchtig gen

Zoals Dawkins al schreef in ‘The selfish gene’ kunnen genen als zelfzuchtig beschouwd worden. Die genen die het organisme voordeel bieden zullen overleven. Met de woorden van Dawkins: “We zijn overlevingsmachines – robot vehikels, blind geprogrammeerd om de zelfzuchtige moleculen bekend als genen te bewaren.” (min of meer vrij vertaald uit het voorwoord).

Genome-engineering-a-new-field-of-scientific-studyEnkele weken geleden kwam in een discussie over de veertigste verjaring van de bestseller van Dawkins het zelfzuchtige gen weer ter sprake. Er werd door Laurence Moran op zijn blog Sandwalk opgemerkt dat de genen waar Dawkins het over heeft niet echt zelfzuchtig zouden zijn, want alleen het DNA dat zich binnen hetzelfde genoom repliceert zou pas echt zelfzuchtig genoemd kunnen worden.

Mijn gedachten dwaalden toen af naar een zeer speciaal en uiterst geval van selfish genes, namelijk genen die een ‘meiotic drive’ veroorzaken. In dat proces worden genen die normaal eerlijk over de geslachtscellen verdeeld worden ongelijk verdeeld, waarbij het gen dat dit veroorzaakt meer dan in de helft van de gevallen aanwezig is. Dit gen, dat ook wel een ‘segregation distorter’ genoemd wordt, komt zo onevenredig vaak in het nageslacht voor en kan uiteindelijk gefixeerd worden. Dit proces is onafhankelijk van het voordeel of nadeel dat het gen zelf biedt.

Gedurende meiose worden er haploide cellen gevormd. Elke cel ontvangt één van de twee homologe chromosomen. Dit resulteert bij grote aantallen geslachtscellen in een gelijke verdeling van de homologen. De allelen worden dus gelijk verdeeld zoals ook de wet van Mendel voorschrijft. Er zullen 50% allelen A zijn en 50% allelen a wanneer het organisme heterozygoot is. Gedurende meiotic drive is het gen (allel) A zo zelfzuchtig dat het er voor kan zorgen dat deze balans helemaal verschoven is. Wanneer dit allel een nadeel vormt voor het organisme kan het desondanks toch gefixeerd worden.

Zoals Dawkins in 1976 al illustreerde met het gen t in de muis, kan dit laatste allel, dat letaal is in homozygose (wanneer het organisme twee kopieën van dit allel bezit), zich in de populatie ophopen in heterozygose (wanneer er slechts een kopie van aanwezig is) door meiotic drive. Uiteindelijk zullen er steeds meer exemplaren zijn die homozygoot voor het gen t en ze zullen doodgaan. Een lokale populatie kan op deze manier uitsterven.

Een interessante alinea in ‘The selfish gene’ van Dawkins is de volgende:

“In spite of its deleterious side-effects, if a segregation distorter (het gen t uit het voorbeeld) arises by mutation it will surely tend to spread through the population. Natural selection (which, after all, works at the gene level) favours the segregation distorter, even though its effects at the level of the individual organism are likely to be bad.” (p.236 30th anniversary edition)

Hier kan over gediscussieerd worden, want natuurlijke selectie zou dit nadelige gen moeten doen verdwijnen en dat is wat het uiteindelijk ook doet wanneer deze lokale populatie uitsterft.

Er is nu opnieuw een gen gevonden dat verantwoordelijk is voor meiotic drive, een segregation distorter. De homologe chromosomen worden gedurende meiose van elkaar vandaan getrokken op een onevenwichtige manier en het gen R2d2 kan daardoor in grote getale verspreid raken in de populatie. Het gen veroorzaakt wel een kleinere worp en heeft dus duidelijk een nadeel in fitness. Desondanks verspreidt het zich met het gemak van een ‘selective sweep’ door de populatie. Dit resultaat wordt in de online bladen aangekondigd met titels als ‘Research challenges Darwin’ en de wet van Mendel alsof het een nieuw fenomeen betreft. Als we Dawkins moeten geloven is de selective sweep het gevolg van natuurlijke selectie en wordt Darwin dus niet betwist.

Uit:

Richard Dawkins; The selfish gene, 1976

Didion JP, Morgan AP, Clayshulte AM-F, Mcmullan RC, Yadgary L, Petkov PM, et al. (2015) A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2. PLoS Genet 11(2): e1004850.
doi:10.1371/journal.pgen.1004850

John P Didion, et al. R2d2 drives selfish sweeps in the house mouse
Mol Biol Evol first published online February 15, 2016
doi:10.1093/molbev/msw036

ScienceNews

 

h/t Rob van der Vlugt

ik ben geen informatiesysteem

Een gastbijdrage van leonardo da gioiella

Cees Dekker, onze nanobioloog, heeft een prachtige prijs gewonnen. Hij heeft besloten van dat geld een levende cel te bouwen, en heeft dat aangekondigd in het RD, het dagblad dat men gewoon is te lezen in reformatorische kringen.
Dat heeft een reactie van Peter Borger opgeleverd. In dat zelfde dagblad. En hoewel ik de uitkomst van de reactie van Borger wel kan volgen – die ziet dat niet zitten – is zijn argumentatie niet de mijne. Het is Borger zoals we hem kennen: van dik hout zaagt men planken, nogal negatief. Ook sarcastisch … verzuurd zou ik haast zeggen.

Borger werkt op een ander terrein van de biologie dan Dekker. Maar, vanuit de geestelijke hoek waar Borger en Dekker beide zitten, zou je niet verwachten dat Dekker leven wil creëren – die gaat de zondeval nog eens dunnetjes overdoen – en zou je een heel andere argumentatie verwachten van Borger: die heeft het over informatiesystemen die niet na te bouwen zijn vanwege hun gecompliceerdheid, en navenant tijdsgebrek.
Borger sluit daarmee aan bij één van de laatste woorden van Richard Feynman – nagelaten op een blackboard! –  die Dekker vreemd genoeg in positieve zin citeert: What I cannot create, I do not understand.

Let wel, die geloofskwestie is niet mijn strijdperk.

Wat mij ineens raakte was dat en Borger en Dekker én de evolutionist community op één lijn zitten.
De handboeken van de officiële evolutiebiologie spreken van het centrale dogma. Mijn boek zegt letterlijk: DNA interacts with the cell and the environment to determine the phenotype. [… DNA] must be transcribed into messenger RNA, ribosomal RNA, and other functional sequences. The mRNA is then translated into … En dat gaat zo nog even door.
Er komt code aan te pas, en er is sprake van decoding.
Dekker heeft het over robotjes – eigenlijk nanomachientjes – en systemen van biomoleculen.
En bij Borger komt het hoge woord er uit: informatiesystemen. De hoge woorden, om precies te zijn: Leven is gebaseerd op gedetailleerde informatieopslag en informatieverwerkende systemen.
Natuurlijk niet zijn hoge woord.
Ik noem dat het hoge woord.
Ofwel, de druppel die voor mij, in mijn gedachtegang die ik afliep, de emmer deed overlopen.

Mijn strijdtoneel hier is dus de officiële leer van de evolutie, die cellen, en organismes, en organen, en uiteindelijk mensen ziet als informatiesystemen.
Het moet afgelopen zijn met het gebazel over computers en informatiesystemen. Wat mij betreft gooien ze de leer van de evolutie maar op hun kop als dat moet, laat ze de handboeken maar herschrijven, andere metaforen bedenken – alles prima.
Deze onzin moet afgelopen zijn.

Ik ben geen informatiesysteem.
Zoals Harry geen kunstmatig intelligent wezen is. Nou ja, als psycholoog zal ie wel eens kunstmatig intelligent gedaan hebben. Vast.
Zoals Rob niet geprogrammeerd is. En als er al iets geprogrammeerds aan hem is, dan heeft ie dat zelf door jarenlange studie gedaan: zijn muscular memory.

Denk even aan de implicaties hé.
Zoals een random process een randomizer veronderstelt, en daarmee een bouwer van die randomizer, zo veronderstelt een informatiesysteem een bouwer; én, ik weet daar iets van, gegeven het gecompliceerde karakter daarvan – zie Borger – een team van bouwers.
En denk niet dat het wel meevalt, omdat er nu eenmaal foutjes worden gemaakt bij het doorgeven van het DNA. Ofwel, zeg niet tegen mij: de soep wordt niet zo heet gegeten leonardo.
Zoals iedereen weet: bugloze informatiesystemen bestaan niet – en dat is er niet beter op geworden met het modulair opzetten van programma’s en systemen. Zelfs de meest eenvoudige programma’s hebben wel een lek.
Dus neem het maar verschrikkelijk, ontzettend erg serieus.

Maar vooral dit.
Informatiesystemen zijn hartstikke deterministisch. Afhankelijk van het signaal dat er in gaat wordt er iets geproduceerd dat heel erg vastligt.  En dat Marleen met andere output komt dan ik bij een overeenkomstige waarneming, is alleen maar omdat zij een ander informatie-verwerkend systeem heeft dan ik …
… of is … poeh … die existentiële vraag kan ik nu even niet aan.
En laat U niet misleiden door het begrip fuzzy logic. Dat bestaat niet echt. Als een programma verschillende gedragingen laat zien op een zelfde inputsignaal, heeft de programmeur dat opgeschreven – met een zeer onfuzzy randomizertje.

Ofwel, en daar hebben we de crux: weg met de vrije wil!

Ik geef toe, ik ben daar zelf debet aan – dat ze denken dat ik geen vrije wil heb, bedoel ik. Ik ben daarin altijd te lankmoedig geweest. Ik heb altijd gezegd: ik weet het niet, van die vrije wil. En ik bedacht een doekje voor het bloeden.
Nu is het afgelopen.
Basta:
Tot aan mijn pensionering was er altijd wel iemand die zei: kom – en ik kwam.
Of iemand die zei: ga – en ik ging.
Nu doe ik niet meer mee.
Nou ja, ik deed altijd al niet mee, maar dat was niet zo goed zichtbaar. Ik was een zeer meegaand, altijd constructief en positief ventje.
Maar denk niet dat ik niet dwars kan zijn. Het DNA van mijn vader staat daar garant voor. Die stapte, toen de boer tijdens de landarbeid iets onaanvaardbaars aan hem vroeg onder de conditie: anders kan ik je hier niet langer laten werken beste man, op zijn fiets en zei: dan bekijk je het maar. En dat in de crisisjaren! En zijn DNA is redelijk compleet overgekomen.

Richard Feynman liet ons deze wijsheid na, aan het einde van zijn leven, op een blackboard: What I cannot create, I do not understand.
En ik voeg daar aan toe:

celletje_bouwen

Ik ben geen informatiesysteem!
Nou ja, ik informeer jullie bij tijd en wijle graag over dwalingen des geestes die zo nu en dan de ronde doen, en ook wel hardnekkig hun rondje blijven draaien – die oprispingen uit heart and mind van die kruiwagen vol kikkers die society heet, high of low om het even.

Update 2015-05-26 16:14

RD: interview Cees Dekker

RD: opinie Peter Borger

RD: opinie René Fransen

TUDelft: grant voor kunstmatige cellen

geen mutaties, geen evolutie

Een gastbijdrage van Leonardo da Gioiella

Se non ci fossero mai mutazioni, non potrebbe esserci evoluzione né selezione naturale. Ogni organismo sarebbe una copia perfetta dei genitori e le specie sarebbero fisse.

intro_evolution_groot_finMet deze onzinzin begint een stukje tekst in L’EVOLUZIONE A FUMETTI, een introductie in de evolutie, een vertaling van Introducing Evolution van Dylan Evans (met illustraties van Howard Selina).
De onzinzin die daar staat luidt in gewoon NL:

Als er geen mutaties zouden optreden [bij de voortplanting] dan kon er geen evolutie bestaan noch natuurlijke selectie. Ieder organisme zou een perfecte kopie zijn van de ouders en de soorten zouden vast liggen.

Uiteraard is het eerste deel waar, maar wel een open deur. Vooral de context, en de toegevoegde illustratie maken het tot onzin.

De context spreekt van “ieder organisme”.
De illustratie toont 2 rijtjes van 3 mannen, als langs een spoorbaan getekend. Let wel: 2 verschillende mannen, de een blond, de ander donker, met elk twee klonen.

Als er geen mutaties zouden optreden ….
Wel, dan waren we vermoedelijk in de simpelste, meest primitieve eukaryoten blijven steken.
Misschien waren er dan wel helemaal geen eukaryoten gekomen.
Je zou je zelfs af mogen vragen: zouden er dan wel prokaryoten zijn gekomen.

Ik zou nu op kunnen houden, maar ik heb me vooral in die context verdiept.
Iemand zou kunnen zeggen: het kan toch zijn dat het optreden van mutaties op enig moment is opgehouden?
Wel, iemand heeft dat gezegd … of moet dat op zijn minst hebben gedacht. De iemand heeft het in deze context geplaatst: de schrijver van deze tekst.
Hij moet zich gerealiseerd hebben: geen evolutie, dan ook geen soorten.

Toch is hij verder gegaan.
Hij zegt: de soorten zouden vastliggen.
En hij illustreert de stelling met mensen die gelijk zijn.
Terzijde: één van die illustraties is verlevendigd met een moederaap en haar jong.

Er is dus het plantenrijk en het dierenrijk. En het zoogdier mens is in volle hevigheid present.

Waar komt dat allemaal vandaan.
Waar komen al die organismes, bouwstenen van de vastliggende soorten, vandaan?
De leerboeken over evolutie kunnen zo in de prullenbak worden gegooid. Er is immers geen DNA dat muteert.
En als het DNA niet muteert – ook geen natuurlijke selectie (ik ben het helemaal eens met de schrijver) én geen seksuele selectie én geen selectie door fokken of telen.

Er staan geen moeders op de illustratie, maar die kerels moeten ergens vandaan komen. Gelukkig is er nog de noodzaak om aan voortplanting te doen. Maar het plezier dat we daar nu aan beleven, zou dat er nog zijn?

’t Heeft natuurlijk zo zijn voordelen.
Geen doorfokken meer.
Geen doofstommen en geen blinden meer, dus je hebt ook geen doofstommeninstituut of blindeninstituut nodig. Nog wel blindenopvang, want er zullen vast nog wel misdadigers zijn, die vanwege de ernst van het misdrijf de ogen worden uitgestoken.

En, hoe gaan we ontdekken waar het allemaal vandaan komt.
Hier wordt een punt wat ik eerder in een discussie heb gemaakt overduidelijk gedemonstreerd: aan de output kun je nog niet het proces herkennen.
Er is geen muterend DNA, dus wie heeft die soorten op de wereld gezet? Zou de big bang verzonnen zijn als er geen evolutietheorie was geweest? En, zo ja, zou iemand dan geopperd hebben dat de soorten tijdens de oerknal, of vlak daarna, gevormd zijn, zoals de elementen, en dat ze uiteindelijk, na een lange reis door de ruimte, wachtend op een zich nog te vormen planeet, die ook nog een maan moest acquiren om te zorgen dat het water opkwam en afging, om daar dan neer te dalen?
Ik vrees dat de boekenkasten geleegd zouden zijn van boeken over evolutie.

Herman Bavinck,  theoloog, had nooit iets hoeven zeggen over ongeloof en evolutie.
En, daar gaat de schoen echt wringen, de boekenkasten zouden weer gevuld zijn met boeken over de grootsheid van de schepping. Want wie kan dat verhaal nog omver blazen als er geen Darwin had kunnen komen?

Se non ci fossero mai mutazioni, ...
Is het denkbaar dat een wezen een kopie van zichzelf zou maken met als enige “weeffout” dat de kopie geen weeffouten meer kan maken. Er wordt vanaf dat moment geen DNA meer gemuteerd bij de voortplanting. Hoe zou dat uitpakken?
Dus de schrijver krijgt gelijk: er zijn wel soorten, maar er wordt niks meer gemuteerd.

Nou ja, als dat een armoedzaaier zou overkomen, een tramp, zou er niks aan de hand zijn. Die zou seksueel wel uitgeselecteerd worden.

Maar wat te denken van Bach. Stel, die was een getrouwe kopie van zijn vader, geen mogelijkheid om nog mutaties te genereren. Dat hij een ander musicus is geworden dan zijn vader komt door de opleiding van zijn broer. Maar bij de nakomelingen gaat het hard. Wilhelm Friedemann en Carl Philipp Emanuel zijn echt klonen, ook in hun muziekproductie. Door vader gemaakt en gekneed. En moeder Maria Barbara, gewoon een nicht, doet dapper mee. Die paar mutaties die ze nog doorgaf tellen niet meer mee. Bach zelf, en zijn zonen en dochters merken al gauw dat de klonen prima functioneren, dus dat inteelt geen kwaad kan en … dat incest dus niet van de boze kan zijn! En omdat Bach goed verdient – in een tijd vol armoedzaaiers en tramps geen onbelangrijk gegeven! – besluiten ze hun toekomst veilig te stellen, en al snel zijn er een hoop JSB-tjes op de wereld gezet, precies zoals de illustratie uit mijn boekje suggereert.

Je moet toch niet aan de gevolgen denken.
Mozart zou zijn kop nog wel boven het maaiveld uitgestoken hebben. Haydn wellicht ook. Maar al snel wordt het muziekleven geheel gedomineerd door de JSB-tjes. Alleen nog maar toccata’s, passionen, Erbarme dich’s, Oratoria. Carl Philipp Emanuel zou geen bijdrage aan de Sturm und Drang geleverd hebben, en dat scheelt een behoorlijke slok op een borrel. De sonates van Schubert hadden we kunnen vergeten, zulke muzikale monumenten als de symfonieën van Bruckner of Mahler – geen kans. Het atonale systeem, of de toonklok van onze eigenste Schat … vergeet het maar.
Alles zou Bach geweest zijn wat de klok sloeg.
En alleen nog maar Soli Deo Gloria.

Ik moet er niet aan denken. Zelfs maar de suggestie dat er nog mogelijkheid tot verlichting in onze genen zou kunnen zitten zou verdwenen zijn.
En, let wel: ook geen Beatles hé. Alles was weggedrukt geworden.
Hoe lang, hoeveel aeonen zou het geduurd hebben voordat ene Rudolf Wijbrand Kesselaar opgestaan zou zijn als Rudi Carrell, en gezongen zou hebben … / dat ik de wijsjes en de sijsjes van de merels ken / ….

Dat zinnetje non […] evoluzione né selezione naturale doet me ook iets anders beseffen.
Eigenlijk zou ik nu kunnen zeggen: mutabiliteit is de drijvende kracht van de evolutie.
Maar … kan ik dat hier wel zeggen?
Dat riekt naar mutationisme.
En Marleen heeft zelf in een comment gezegd: Ik zie niets in het mutationisme als idee, …
Als gastschrijver mag ik natuurlijk schrijven wat ik wil, maar een beetje respect voor de gastvrouw mag natuurlijk wel.
Aan de andere kant, Masatosha Nei heeft het zelf gezegd met zijn theorie van mutation driven evolution: mutation is the driving force.
En daar is wel veel kritiek op gekomen, maar daar staan mensen als Wagner tegenover, die op dit blog toch heeft mogen gloriëren, … while not necessarily agreeing with Nei’s position, treat it as an alternative view relevant to reforming or improving evolutionary thinking … (wiki).

Dus ik zeg het toch maar.
Mutabiliteit is de drijvende kracht van de evolutie. Natuurlijke selectie en seksuele selectie, zijn een soort van hulpprocesjes geworden.

Al moet ik wel vrezen dat Marleen misprijzend – het zal wel zeer misprijzend zijn – haar wijze hoofd zal schudden.
Over zoveel domheid.
Van leonardo.

Stilstaande evolutie, de nulhypothese

Evolutie van leven veronderstelt een ontwikkeling van organismen. De evolutietheorie van Darwin stelt dat soorten ontstaan door natuurlijke selectie. Het is moeilijk te testen of er bij afwezigheid van selectie toch evolutie plaatsvindt. Bijna elke omgeving of niche betekent competitie voor schaarse voedselbronnen en daaruit volgt een survival of the fittest. Nu heeft een groep onderzoekers organismen gevonden die al meer dan 2 miljard jaar niet geëvolueerd zijn. Het gaat hierbij om zwavel bacteriën.

Zij bestudeerden met speciale instrumenten zoals Raman spectrografie en confocale laser scan microscopie fossiele gesteenten van de zeebodem en vonden daarin fossiele filamenten van zwavel bacteriën. Wanneer ze deze vergeleken met de huidige zwavel bacteriën die op andere locaties leven zagen ze duidelijke overeenkomsten in de vorm en lengte van de filamenten. Zie de onderstaande figuur.

A

Hedendaagse en precambriaanse filamenteuze zwavelcyclerende micro-organismen. A en E Hedendaagse microben 7 – 9 micrometer in diameter vergeleken met fossielen van het 2,3 miljard jaar oude Turee Creek gesteente (B en F) en het 1,8 miljard jaar oude Duree Creek gesteente (C,D,G en H)

 

De gesteenten, die in het Australische Turee Creek en Duck Creek gevonden werden, dateren van resp. ca. 2,3 miljard jaar en 1,8 miljard jaar geleden. Deze perioden volgen op de Great Oxidation Event (GEO) en de ontwikkeling van deze zwavel bacteriën wordt gezien als een antwoord op de langzame toename van zuurstof in de atmosfeer. Daardoor konden deze bacteriën sulfaat (SO42-) en nitraat (NO3-) metaboliseren, stoffen die alleen na oxidatie van zwavel en stikstof beschikbaar zijn. De tegenwoordige zwavel bacteriën, die zoveel op hun fossiele voorouders lijken, bevinden zich in de bodem in een relatief zuurstofloze omgeving, maar profiteren van het sulfaat en nitraat uit de iets hoger gelegen diepten. Zij nemen deel aan de zwavelcyclus waarin bacteriën het sulfaat reduceren tot waterstofsulfide, dat opnieuw geoxideerd kan worden tot het element zwavel met behulp van zuurstof uit de bovenliggende lagen. Het zwavel kan dan weer geoxideerd worden tot sulfaat door andere bacteriën.

De betreffende zwavel bacteriën worden gekenmerkt door hypobradytelic lifetyles ofwel, een leefstijl die niet veranderd is gedurende meer dan 2 miljard jaar. Deze onveranderde leefstijl vindt men ook bij de cyanobacteriën, die zeer competitief waren door de productie van het toenmalige voor veel organismen giftige zuurstof. Voor de zwavel bacteriën geldt dat er, sinds het ontstaan van de eerste microbiële groepen, weinig tot geen stimulering was tot aanpassing aan veranderende condities. Het zijn bewoners van relatief koude, rustige, zuurstofvrije sedimenten, waar geen dagelijks licht doordringt. Deze condities zijn hetzelfde sinds de vroege geschiedenis van de Aarde. Een omgeving die dus niet veranderde.

Het is daarom verleidelijk deze zwavel bacterie gemeenschappen als bewijs te zien van de “negatieve” nulhypothese van Darwiniaanse evolutie: als er geen verandering plaatsvindt in de biofysische omgeving van een goed aangepast ecosysteem, dan zou er geen soortvorming, geen evolutie van de vorm, de functie of de metabolische eisen van biotische componenten zijn. Maar er moet rekening gehouden worden met het feit dat de morfologie van de bacteriën uit convergente evolutie voortkomt en dat het metabolisme en de genomen van de precambriaanse bacteriën wellicht anders was. Het DNA kan helaas niet vergeleken worden. Er zijn bovendien relatief weinig fossielen gevonden, waardoor er ‘missing links’ lijken te bestaan. Mochten er meer van dergelijke fossielen gevonden worden die dit gat wat kunnen dichten dan zal het mogelijk zijn de nulhypothese voor Darwiniaanse evolutie te bevestigen.

Eerdere hier verschenen berichten behandelen zwavel bacteriën die elektriciteit in de zeebodem genereren en geven wat extra informatie over hun metabolisme en leefwijze (1, 2) .

 

Uit:  J. W. Schopf, A. B. Kudryavtsev, M. R. Walter, M. J. Van Kranendonk, K. H. Williforde, R. Kozdone, J. W. Valleye, V. A. Gallardol, C. Espinozal, D. T. Flannery; Sulfur-cycling fossil bacteria from the 1.8-Ga Duck Creek Formation provide promising evidence of evolution’s null hypothesis; PNAS 5 january 2015 J. William Schopf, doi: 10.1073/pnas.1419241112

De cellular automata van Gerard ’t Hooft

Afgelopen donderdag 18 december was er een Lectio Magistralis van Gerard ’t Hooft, Nobelprijswinnaar Natuurkunde in 1999 in de Aula Magna van de Universiteit van Padua. De titel was: “Cellular automata and the foundations of Quantum mechanics.”

Gerard t'Hooft in de Aula Magna

Gerard ’t Hooft in de Aula Magna

Aangezien ik mij niet lang geleden voor kwantumbiologie en biofysica ben gaan interesseren, leek het me wel een goede gedachte deze lezing bij te wonen. Ik weet bijzonder weinig van kwantummechanica en doe hier een bescheiden poging beknopt weer te geven wat ’t Hooft zoal zei. Het was ook niet mogelijk aantekeningen te maken, dus schrijf ik een en ander uit ’t Hooft op. De foto van ’t Hooft is vanwege het slechte licht niet goed gelukt, maar hij was er echt (zie foto).

Het abstract luidde als volgt:

“Quantum mechanics is usually regarded as a theory that is fundamentally different from any deterministic system. It even demands for an alien logic, and it is considered to be a fact that simple classical explanations of quantum phenomena will forever be impossible. Yet there are a few simple models that suggest the contrary. Wanting to know what would be wrong with such models, we investigated these further. We are getting models that look more and more like the quantum world, and they even yield fascinating explanations for some mysteries that have been haunting the investigators of the quantum. Could the usual “no-go” theorems be wrong?”

Een cellular automaton bestaat uit een matrix waarin een cel (geen biologische cel!) informatie bevat. Dit kan een 0 of een 1 zijn of een combinatie daarvan of heel iets anders. Deze informatie beïnvloedt de neighbouring cells volgens een bepaald algoritme en de matrix evolueert. Met de cellular automaton kan een big bang gesimuleerd worden of bijvoorbeeld evolutie van een heelal of evolutie volgens de evolutietheorie van Darwin.

 

 

Dit proces kan in principe reversibel zijn. Gerard ’t Hooft voegde toe dat dit waarschijnlijk alleen van toepassing is op microschaal (elementaire deeltjes en wellicht moleculen?) maar niet op macroschaal (planeten?). Leonardo da Gioiella1) lijkt voorstander van het idee dat ons universum uitdijt en inkrimpt. Zie ook  een van zijn laatste comments onder voorgaand blog.

Er wordt een onderscheid gemaakt tussen de klassieke of Newtoniaanse fysica en de kwantumfysica die elk hun eigen regels hebben. Wij kunnen met onze meetapparatuur niet verder dan tot de nu bekende elementaire deeltjes. Nu is Gerard ’t Hooft er van overtuigd dat we dat in de toekomst wel kunnen en wellicht zullen zien dat ook deze deeltjes onderhevig zijn aan de wetten van de klassieke fysica. Hoe groter de schaal is waarop je kunt observeren, hoe meer je onafhankelijk zult zijn van statistische metingen van het gedrag van de deeltjes. In dat geval zou het universum deterministisch zijn en ligt alles dat er nu gebeurt besloten in hetgeen er eerder gebeurd is.

De uitdrukking “ het stond (of staat) in de sterren geschreven” is dan van grotere betekenis dan je zou denken.

Dat het universum deterministisch van aard zou zijn, zou betekenen dat wij geen vrije wil hebben, volgens ’t Hooft. Het is in dat geval ook denkbaar een universum te simuleren zoals beschreven in het artikel “het simulatieargument” van Kees Jaspers2).

De lezing behandelde nog veel meer onderwerpen, maar die waren voor mij niet allemaal even duidelijk. Bijvoorbeeld informatie in bits die zich op de wanden van de zwarte gaten zouden bevinden. Daar kan ik jammer genoeg door gebrek aan achtergrondkennis niets zinnigs over zeggen.

 

1) Leonardo da Gioiella gaf eerder gastbijdragen op dit blog en geeft regelmatig commentaar onder mijn blogberichten. Hij heeft ook een eigen blog en site.

2) Kees Jaspers is geïnteresseerd in fysica en ook hij draagt met reacties bij onder dit blog. Zie ook zijn artikel op Forum C van Geloof & Wetenschap en het blog van Jan Auke Riemersma over het simulatieargument en over de vrije wil.

De proto-RNA wereld

De hypothesen over de oorsprong van leven lopen nog steeds uiteen. Ook de omstandigheden waaronder het leven zich ontwikkeld zou hebben kent vele versies. De bekendste zijn de primordiale soep en de alkaline hydrothermale bronnen op de oceaanbodem. Deze laatste heeft tegenwoordig een grote voorkeur, onder andere omdat de hete bronnen schoorstenen vormen van poreus materiaal waarin de eerste cellen gevormd en genesteld zouden kunnen zijn geweest. Bovendien bestaat daar een verschil in pH tussen de binnen- en buitenwand van de schoorsteen, waardoor er een stroom aan protonen beschikbaar was als energiebron voor dit eerste leven.

De protocellen moeten ook DNA of RNA opgebouwd hebben. Men gaat er van uit dat er eerst RNA ontstond en spreekt dan van de RNA-wereld. RNA is niet alleen een eenvoudiger molecuul dan DNA, het heeft ook de mogelijkheid tot auto-replicatie via de ribozymen. Patrick Forterre lanceerde de hypothese dat retrovirussen vervolgens dit inmiddels cellulaire RNA omzetten in DNA, dat veel stabieler is en als informatieopslag dient.

2,4,6-Triaminopyrimidine

2,4,6-Triaminopyrimidine

Maar hoe werd het eerste RNA gevormd. Tot nu toe hielden veel onderzoekers zich bezig met hoe de verschillende

cyaanzuur

cyanuurzuur

‘onderdelen’ zich kunnen vormen en hoe daaruit het RNA kan ontstaan. Hoe komen het ribose en de base tot een nucleoside en met fosfaat tot een nucleotide? Dit onderzoek is al vele decennia bezig, maar werpt niet veel vruchten af. Nicholas Hud zoekt momenteel naar een heel andere oorsprong. Hij heeft bepaalde moleculen bij elkaar geplaatst en zag dat deze ook polymeren konden vormen. Deze reactie verloopt geheel spontaan. Hij liet zien dat een licht gewijzigde vorm triaminopyrimidine (TAP) en cyanuurzuur (CA) vanzelf assembleren en daarmee op de klassieke basenparen lijken. Ze vormen dan hexameren die zich opstapelen en lange polymeren vormen. Ze toonden ook aan dat TAP heel eenvoudig een binding aangaat met ribose, en zodoende spontaan nucleosiden vormt. Zodra daaraan CA toegevoegd werd ontstonden er lange polymeren, de lengte van genen (meerdere duizenden basenparen).

TARC CA

Structuur van TARC (een licht veranderde vorm van TAP) en CA met R (ribose). Deze opeengestapelde hexameren of rosetten vormen lange polymeren van ongeveer 100 nm (0,1 micrometer; dat is erg lang).

Deze studie laat zien dat het in principe relatief eenvoudig kan zijn een voorloper van RNA te creëren. Of de evenementen zich werkelijk zo en met deze ingrediënten hebben voorgedaan blijft ook voor de auteurs de vraag. Het is echter van belang op te merken dat er nu een verschuiving is ontstaan in het hele concept van de RNA-world. De vraag is nu niet meer hoe de verschillende onderdelen (ribose, fosfaat en base) een nucleotide konden vormen en vervolgens een RNA-streng, maar hoe een voorloper van een auto-replicerend polymeer vorm kon geven aan een polymeer van RNA. Dit betekent een heel andere manier van denken en experimenteren en Nicholas Hud heeft daarmee een verandering in het concept van de RNA-wereld gecreëerd. In zijn concept lijkt er sprake te zijn van een ware evolutie van polymeren, met als eindpunt RNA en niet een recht-toe-recht-aan chemische reactie van de bouwstenen van een nucleotide en de polymerisatie daarvan tot RNA.

protoRNA-evolution_web

De proto – RNA theorie. Let op de veranderingen die stapsgewijs plaatsvinden in respectievelijk de ribose, de base en het fosfaat. Door Nicholas Hud. (Klik voor een grotere weergave op het plaatje)

Het ging wellicht om een primordiale melange aan moleculen, waar de meest stabielste en efficiëntste replicatoren de boventoon gingen voeren. Als de polymeren van Hud inderdaad zo eenvoudig tot stand komen, kunnen deze deel uitgemaakt hebben van een verscheidenheid aan polymeren, waaruit de ‘beste’ overbleven. Er zijn momenteel veel hoeken van waaruit het ontstaan van de eerste replicatoren bekeken wordt. Zo is er bijvoorbeeld het werk van Jeremy England dat berekent hoe alle replicatoren (al het leven) energie vrijgeven gedurende de replicatie en daarmee aan de Tweede wet van de thermodynamica gehoorzamen, of dat van Addy Pross (zie ook blog van Gert Korthof), die spreekt van dynamic kinetic stability (DKS) in contrast met de Tweede wet van de thermodynamica. Recente ontwikkelingen zijn er ook met in silico experimenten, waarbij strings binnen een binair polymeer model na verschillende replicatie-cyclussen voortdurend dezelfde combinaties opleveren, alsof er een interne selectie plaatsvindt. Al dit onderzoek staat in de kinderschoenen, maar het belooft heel wat en er zullen nog meerdere blogs op volgen.

Uit: Chemists Seek Possible Precursor to RNA by Emily Singer in Quantum Magazine

C. Chen, B. J. Cafferty, I. Mamajanov, I. Gállego , J. R. Krishnamurthy, and N. V. Hud. Spontaneous Prebiotic Formation of a β-Ribofuranoside That Self-Assembles with a Complementary Heterocycle. J. Am. Chem. Soc., 2014, 136 (15), pp 5640–5646 DOI: 10.1021/ja410124v

Met dank aan Harry Pinxteren, Gert Korthof en Rob van der Vlugt voor de discussies, boeken en artikelen

 

De eerste ionenpompen en de oorsprong van leven

journal.pbio.1001926.g002 gradient

Figuur 1: Boven de barrière het zeewater en daaronder de basische waterstroom. Op de grens daarvan en in het gradiënt bevindt zich de eerste benadering van een cel met lekkend membraan waar de OH- en H+ passief door verspreiden. Een eerste protonkanaal exploiteert het gradiënt voor de vorming van ATP of de assimilatie van koolstof door fixatie van CO2. doi:10.1371/journal.pbio.1001926.g002

Nick Lane houdt zich al lang bezig met onderzoek naar de oorsprong van leven in hydrothermale bronnen. Daarover schreef ik verschillende blogs, waaronder deze voorgaande die de hypothese simpel weergeeft. Alkaline hydrothermale bronnen bestaan uit een poreuze schoorsteen waar door de wand een proton gradiënt bestaat. Het basische water met hoog pH (dus weinig H+; de protonen) stroomt door de schoorsteen naar buiten. Aan de buitenkant van de schoorsteen is het pH lager (met relatief hoge concentratie aan H+). Dit verschil zorgt ervoor dat er een gradiënt bestaat tussen de binnenkant en buitenkant van de schoorsteenwand. Nu stelt de hypothese dat zich hier de eerste cellen vormden. Deze konden zich nestelen in de poriën van de wand en gedurende de lange evolutie tijden membranen, RNA/DNA en eiwitten vormen – de basis ingrediënten van cellen.

In hun laatste publicatie, die rijk is aan prachtige illustraties, gaan Nick Lane en medewerkers nog

Rechts de evolutie van bacteriën en links de evolutie van Archaea vanaf LUCA

Rechts de evolutie van bacteriën en links de evolutie van Archaea vanaf LUCA.  doi:10.1371/journal.pbio.1001927.g001

 

verder terug in de tijd en tonen met behulp van modellen voor membranen aan dat er eerste een soort lekkend membraan bestond, waarbij protonen vrijelijk konden passeren. Deze passage of dit gradiënt kon uitgebuit worden door een protonpomp, verbonden aan een ATP-ase die ATP (het universele betaalmiddel in alle organismen) kon produceren of waarbij CO2 geassimileerd en gefixeerd werd. Toch stroomt in deze lekkende cellen het grootste deel van de binnengestroomde protonen snel weg. Ze pasten hun model aan en toonden aan dat een vermindering van de lekkage een sterker gradiënt door de celwand creëert. Deze verbetering ging vermoedelijk samen met het ontstaan van een pomp die zowel natrium als protonen pompte in tegenovergestelde richting – de zogenaamde natrium (sodium) proton antiporter of SPAP. Aangezien lipide membranen minder permeabel zijn voor Na+ permitteerde dit het ontstaan van een gradiënt voor natrium dat uitgebuit kon worden door een ATPase met promiscue activiteit ten aanzien van zowel natrium als protonen zoals het geval is voor primitieve ATPase. Aangezien lipide membranen minder permeabel zijn voor Na+ permitteerde dit het ontstaan van een gradiënt voor natrium dat, samen met het natuurlijk bestaande gradiënt voor H+, uitgebuit kon worden om energie uit op te halen. Deze 60% toename in beschikbare energie, de capaciteit ook in minder sterke gradiënten te kunnen overleven en de beter sluitende membranen zouden de toekomstige cellen in staat moeten stellen andere ecologische niches te bewonen.
De SPAP gaf een groot voordeel gedurende de lekkende fase en bleef een goede uitvinding ook voor de meer sluitende membranen getuige het feit dat de fylogenese van dit eiwit aantoont dat het in LUCA, de laatste gemeenschappelijke universele voorouder van de cellen reeds aanwezig geweest moet zijn. Pas nadat er ook actieve pompen ontstonden werd het voordelig de membranen te dichten. Ook voor dit belangrijke facet hebben de onderzoekers modellen gemaakt. Het voert ver om ook dat helemaal te beschrijven. Het komt erop neer dat de verschillen in membranen tussen twee belangrijke domeinen van het leven, de Archaea en de bacteriën, voortkomen uit LUCA die waarschijnlijk een membraan van eenvoudige vetzuren had. De Archaea en bacteriën tonen elk kleine maar belangrijke verschillen tussen hun membranen, die te herleiden zijn naar een gemeenschappelijke voorouder met een lekkend membraan. Kortom, de identiteit van LUCA wordt volgens deze theorie steeds duidelijker. Hoe dit te rijmen is met het idee dat virussen aan de oorsprong stonden van de cellen en hun DNA zou eens beter belicht kunnen worden. Ook de RNA-wereld, die zijn oorsprong zou hebben in geothermale bronnen, laat zich moeilijk integreren in deze visie van de oorsprong van leven. Het wordt tijd dat wetenschappers als Nick Lane, Eugene Koonin, Patrick Forterre eens met elkaar gaan overleggen.

Het laatste nieuws uit Nature meldt dat men van plan is de zeebodem te gaan ontginnen op mineralen. Dit zou een gevaar kunnen betekenen voor de ecosystemen rondom de hydrothermale bronnen. We beginnen ons net de juiste vragen te stellen en het potentiele studieobject dreigt vernietigd te worden. Dat zou zonde zijn.

Uit: Sojo V, Pomiankowski A, Lane N (2014) A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biol 12(8): e1001926. doi:10.1371/journal.pbio.1001926
Nature News: Health check for deep-sea mining. European project evaluates risks to delicate ecosystems.

Derde en laatste deel van een verkenning van Biofysica

Een overzicht van de laatste groep van zes hoofdstukken uit het boek ‘Physics in Mind; a quantum view of the brain’ van Werner R. Loewenstein (2013)

Werner R. Loewenstein

Werner R. Loewenstein

Het kan al meteen verklapt worden: behalve in de zintuigen als visie is er in het brein zelf geen direct bewijs van kwantummechanica aangetroffen. Loewenstein licht dit uiteraard uitgebreid toe en laat zien hoe het brein wel gebruikt maakt van parallelle computatie. Dit zou een indirecte bewijs zijn van kwantum computing en betekent volgens hem dat het brein er dus wel gebruik van maakt. Het probleem lijkt te zijn dat de metingen door ruis overstemd worden.

Hij schildert in dit deel van het boek de anatomie van het brein af. Daarbij geeft hij veel belang aan de weergave van de ons omringende werkelijkheid. Hij benadrukt nog eens dat wat ons brein uit de ons omringende wereld haalt wellicht niet een totaal en compleet beeld is van de werkelijkheid, maar dat dit beeld er op gericht is en optimaal is om ons te doen overleven in ‘the struggle for life’.

Hij behandelt nog eens het zicht en hoe zich daarin stereovisie ontwikkelde. In het algemeen geldt voor de zintuigen dat wat rechts waargenomen of gevoeld wordt verwerkt wordt in de linkerhelft van ons brein. Dit is bekend, maar minder bekend is dat het een evolutionair overblijfsel is van de tijd waarin de zintuigen slechts dienden om obstakels te vermijden en te ontwijken, die werden aangestuurd door spieren in de tegenoverliggende lichaamshelft. (Wellicht zoiets als roeien met de rechter peddels wanneer je naar links wilt varen). Vervolgens wordt aangekaart hoe als gevolg van een veelzijdige en overvloedige input, de informatie in parallel verwerkt wordt. Zo worden er veel computaties tegelijk uitgevoerd, een totaal andere wijze dan die waarmee onze computers werken, waarin informatie in sequentie verwerkt wordt. Parallelle computatie is snel en is voordelig voor wat betreft de kosten aan informatie. Het is waarschijnlijk dat evolutie hiervoor koos precies vanwege de snelheid en zuinigheid en het is daarom te verwachten dat het al vroeg zijn intrede deed zoals bij wormen die slechts zo’n honderd neuronen bezitten. Sequentiële computatie zou veel te langzaam zijn en zou een wereld van luiaards opleveren. De snelheid is bijzonder hoog in het zintuig zicht en kan zeker niet van sequentiële computatie afhangen.

Het is belangrijk te beseffen dat het brein geen ‘plaatje’ heeft van de zichtbare wereld vergelijkbaar met fotografie. Er is absoluut geen sprake van een compositie van pixels. Er worden contrasten aangescherpt, bewegingen geaccentueerd. Bovendien bestaan er cellen in de visuele cortex die bijzonder gevoelig zijn voor de oriëntatie van de dingen in de buitenwereld. Daarin wordt onderscheid gemaakt tussen wat verticaal, horizontaal en dwars geplaatst is. Ook lijkt het of er slechts één cel is (neuron) die in staat is een bepaalde ‘gestalt’ of gelaat te herkennen (zie “Grandmother Cell”). In werkelijkheid gaat het om meerdere samenwerkende cellen. Een groepje van 25 neuronen was in staat te reageren op één gezicht van de 3.000 die getoond werden. Deze codering is een gevolg van het leren herkennen van gezichten ofwel ‘imprinting’. In de stroming van informatie naar deze cellen wordt betekenisloze informatie onderweg verloren, terwijl betekenisvolle informatie wordt bewaard. Maar wat is betekenisvol of wat bedoelt men met betekenis? Betekenis wordt gegenereerd door de neuronen. Filosofen zijn eeuwenlang bezig geweest de vraag over wat ‘betekenis’ is te beantwoorden. Richard Feynman (met een knipoog naar de vraag of filosofie nuttig is) merkte op dat wetenschapsfilosofie net zo nuttig is voor wetenschappers als ornithologie voor vogels.

Over het bewustzijn weten we niets. Ook Loewenstein kan er niets over zeggen. Er bestaat niet eens een duidelijke definitie van. Het is meer een gevoel van besef van het bestaan van een wereld buiten ons en binnenin ons, een gevoel met een eindeloze hoeveelheid nuances. Het is een gevoel van herinnering aan dingen – een geliefd gezicht, de aanraking van een verdwenen hand, het geluid van een stem die er niet is. Het is een besef van de tijd die verstrijkt, van geluk en verdriet, van verwondering en verlangen – het hele ik. Het bewustzijn is het hoogtepunt van informatieverwerking en computing. Het zou niet in je opkomen een computer te vragen of hij gelukkig is of spijt heeft bijvoorbeeld. Er blijft een diep gat tussen digitale informatieverwerking en bewustzijn.

Voor wat betreft het bewustzijn en kwantuminformatie zijn er verschillende theorieën. Is de decoherentie ofwel het instorten van kwantumgolven verweven met de observatie door een bewust wezen? Of wordt decoherentie veroorzaakt door andere binnenvallende deeltjes (fotonen van de zon of afkomstig uit diepere gebieden van de ruimte, of moleculen in de lucht of in het water? Decoherentie was een belangrijk onderwerp in de filosofie en wel de kennistheorie. Loewenstein vertelt dat decoherentie spontaan plaatsvindt, er is geen menselijke waarnemer voor nodig. Decoherentie heeft dan ook niets met bewustzijn te maken. De hypothese over kwantummechanica in de microtubulen van het brein komt ook te vervallen. Deze eiwitstructuren gaan niet verder dan het membraan, er is dus geen intercellulaire continuïteit. Ook theorieën betreffende de gap-junctions zijn onhoudbaar, ze zitten vol water en ionen die direct decoherentie zouden induceren.

De conclusie is dat aangetoonde kwantummechanische fenomenen niet verder gaan dan de fotosynthese en het zintuig zicht. De keus van evolutie werd bepaald door hetgeen beschikbaar was in de Aardse ruimte. Dat waren twee energievelden – een veld van elektronkwanta en een veld van fotonkwanta – en daar waar de velden overlapten was informatie gratis beschikbaar. Evolutie kon deze aanbieding niet weerstaan. Het neuronale netwerk van ons brein kan met twee computatie manieren werken: een kwantummanier waarin kwantumgolven het substraat vormen en de macroscopische manier waarbij grote pakketten ionen het substraat vormen. De eerste manier dient voor parallelle computatie en de tweede voor de integratie van de lagere orde van polynomiale computatie. Daarbij is de kwantum manier economischer voor wat betreft de informatie en was waarschijnlijk eerder op het bioevolutionaire toneel, lang voordat de twee manieren gingen samenwerken.

Het gaat er vanaf nu dus om de kwantumgolven in de hersencentra aan te tonen en op een of andere manier het probleem van de ruis te overkomen. Er wordt momenteel veel onderzoek gedaan met moelculen die kwantumboolians kunnen genereren. Daar wordt zeker en snel vooruitgang in geboekt.

Loewenstein besluit met:

“So, all things considered, there are reasons to be optimistic, though I am reminded of what chairman Mao said in the 1960s when asked what he thought of the French Revolution: “It’s too soon to tell”.”

 

h/t to Gert Korthof die onder mijn blog over Kwantumbiologie wees op dit boek.

 

Diepzeefossielen in de Alpen

Er worden voortdurend nieuwe ontdekkingen gedaan op allerlei niveau van leven. Zo wordt onderzocht hoe ons genoom in elkaar steekt, wat nu precies genen zijn en hebben we nog slechts een vaag idee hoeveel leven er in de oceanen zit. Op allerlei gebied zien we het topje van een ijsberg die doet vermoeden dat er heel veel te ontdekken en te bestuderen is.

In dat opzicht staat de biologie nog steeds in haar kinderschoenen. Gek genoeg zijn er wetenschappers die denken dat er in hun vakgebied niet veel nieuws meer te ontdekken valt. Er stond een interview aan George Ellis, een beroemd fysicus, in een blog van de Scientific American, waarin hij stelt dat men op het gebied van de kosmologie eigenlijk alles nu wel gemeten en gezien heeft. Alleen de gaten zouden opgevuld kunnen worden. Hij zegt dan betreffende de aarde en de oceanen als analogie het volgende:

“…exploring the Earth: once upon a time we had only fragmentary knowledge of what is there. Then we obtained a global picture of the Earth’s surface, including detailed satellite images of the entire land mass. Once you have seen it all, you have seen it all; apart from finer and finer details, there is nothing more to find. You might respond, but we can’t see to the bottom of the oceans. However, we do indeed now have quite good maps of the ocean floor too, through various sounding techniques.”

Dit is waarschijnlijk als analogie bedoeld voor hoe het gesteld is met de astrofysica en de kosmologie. Het is zeer spijtig te horen dat men er daar al ongeveer helemaal uit is en heb ook moeite dit te geloven. Dat je een plaatje hebt van hoe de wereld, het heelal, er in grote lijnen uitziet, wil nog niet zeggen dat je ‘alles al gezien hebt’. Het is nog lang niet duidelijk hoe de levensprocessen precies werken en het is dan ook vreemd om te stellen dat zodra je het ‘gezien’ hebt je er alles al van weet.

deepsea_01

diepzeefossiel

In de biologie is dat heel anders gesteld. Het citaat van Ellis laat ook zien dat je met een visie als die van een fysicus niet ver komt als je zo oppervlakkig kijkt. Het kan zijn dat hij tevreden is met wat hij weet na een leven lang onderzoek, maar veel onderzoekers beginnen nog maar net en stellen zich heel andere en diepere vragen.

Een mooi voorbeeld van hoe weinig we nog weten komt juist van de oceaanbodem. Daar bevindt zich een totaal onbekend ecosysteem, dat in het verleden een grote variëteit aan diersoorten heeft voortgebracht. Tot nu toe dacht men dat veel diepzeedieren zich ontwikkelden vanuit ondiepe kustwateren en vervolgens naar de diepzeebodem migreerden. Het tegendeel lijkt waar te zijn. Men vond in de Alpen zo’n 2.500 soorten fossiele diepzeedieren die duidelijk niet afhankelijk waren van licht en daar zich naar alle waarschijnlijkheid uit diepzeevoorouders ontwikkelden. Dit laat zien dat de diepzee een enorme biodiversiteit herbergt waar we slechts een idee van beginnen te krijgen. Zo blijkt maar dat de oceaanbodem ‘zien’ met satellieten niet betekent dat je er ook alles over weet. Integendeel, het onderzoek begint pas.

 

Uit:

Physicist George Ellis Knocks Physicists for Knocking Philosophy, Falsification, Free Will in Scientific American

Fossil discovery in Alps challenges theory that all deep sea animals evolved from shallow water ancestors in Physorg

Ratzinger, Dawkins, Odifreddi, Monod, en meer…

Het is geen vers nieuws meer, maar er is een dialoog op gang gekomen tussen Joseph Ratzinger en Piergiorgio Odifreddi, een Italiaans wiskundige.

FESTIVAL DELLA MENTE

Piergiorgio Odifreddi

De ex-paus heeft een brief geschreven aan Odifreddi. Het is een reactie op een essay van Odifreddi met de titel, “beste Paus, ik schrijf je” (“Caro papa, ti scrivo”) dat weer een kritiek is op de werken van Ratzinger.

De brief van Ratzinger gaat over veel onderwerpen zoals, de historiciteit van Jezus, de verbinding tussen religie en rede en vooral over de waarde van de wetenschap.

Ratzinger zegt dat er heel wat science-fiction in de evolutietheorie te vinden is. Richard Dawkins met zijn “the selfish gene” noemt hij een klassiek voorbeeld van science-fiction. Hij haalt ook een stuk van Jacques Monod (Nobel 1965) aan uit zijn beroemde boek “Toeval en onvermijdelijkheid” en zegt daarvan dat de schrijver dat stuk er ingezet heeft wetende dat het om science-fiction gaat. Het betreft een citaat waarin Monod beschijft hoe de gewervelden tetrapoden ontstonden uit vissen die langzaamaan de vloedlijn, de kust, verkozen. Waar zouden volgens de ex-paus de gewervelde tetrapoden vandaan gekomen zijn ? Had Johannes Paulus II niet al ingezien dat de evolutietheorie op zeer sterke basis staat inmiddels. Daar denkt Ratzinger blijkbaar weer heel anders over.

Het lijkt erop dat Ratzinger opnieuw dezelfde fout maakt als indertijd de kerk tegen Galileo. De kerk was toen, zoals Feyerabend al beweerde, zo strikt wetenschappelijk en aan de wetenschappelijke methode gebonden dat ze de wetenschappelijke ideeën van Galileo niet konden accepteren omdat daar de bewijzen niet sterk genoeg voor waren.

Er is plotseling dus veel kritiek op “The selfish gene” van Richard Dawkins niet alleen van de ex-paus. Onder andere van Laurence (Larry) Moran en van een blogger van the Guardian, Andrew Brown die op zijn buurt weer door Jerry Coyne bekritiseerd wordt. Kortom, een heen en weer van argumenten. Een mooie ode aan Monod daarentegen is het boek van Sean Carroll die vandaag bij Larry Moran op bezoek was.

Het is interessant te zien dat een relatief oud boek als dat van Dawkins nog steeds zoveel stof doet opwaaien. Dawkins lacht in zijn vuistje nu zijn bestseller opnieuw zoveel aandacht krijgt net voor de uitgave van zijn nieuwe autobiografie.

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

Jonas Bruyneel

Literatuur/Journalistiek/Muziek

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più

Microplastics

INTERREG MICRO PROJECT

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Vita da simbionte

perché collaborare è talvolta meglio che combattere

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Evolutie blog

bij dezen en genen

The Finch and Pea

The Public House for Science...

voelsprieten

* wonder van het alledaagse *

the aphid room

All about aphids... not simply bugs|

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

%d bloggers liken dit: