Op zoek naar de klepel

bij dezen en genen

Tag archief: kwantumbiologie

Magnetoceptie met kwantum entanglement

Er zijn twee soorten magnetoceptie bij vogels. Beide maken de migratie van vogels mogelijk, waarbij ze zich oriënteren op het Aardmagnetisch veld. De eerste, die door velen als de belangrijkste, de meest voorkomende of meest gebruikte vorm wordt gezien is afhankelijk van magnetite dat zich bij vogels in de nervus trigeminus in de kop bevindt. Omdat de andere vorm van magnetoceptie die gebruik maakt van kwantum entanglement enige vragen opriep in voorgaand blog1, is het zeker interessant deze laatste vorm van magnetoceptie beter te belichten.

Figuur De jaarlijkse cyclus van de trekvogel (in de figuur links die van de witkeelgors, Zonotrichia albicollis) omvat twee migratieperiodes, onderbroken door voortplanting en overwintering. Na de voortplanting vervangen de vogels hun veren en vullen ze hun dieet met vetmestend voedsel aan om hun vlucht naar warmere oorden van brandstof te voorzien. In het voorjaar, als de dagen langer worden, gaan de vogels opnieuw in de rui, om terug te keren naar hun broedplaatsen in de zomer, waar ze paren en hun jongen grootbrengen.
Illustratie door Barbara Aulicino. Figuur overgenomen uit Avian Migration: The Ultimate Red-Eye Flight

Magnetoceptie met kwantum entanglement is gebaseerd op het radicale paar mechanisme (Radical Pair Mechanism) dat kan worden beschreven in de volgende simpele schets van de drie belangrijkste stappen waaruit het mechanisme bestaat. In de eerste stap valt een foton op het donormolecuul van het paar, waardoor een elektron van het paar wordt aangeslagen en aan het acceptormolecuul wordt gedoneerd. Dit resulteert in een door door spin gecorreleerd maar ruimtelijk gescheiden elektronenpaar waarvan men gewoonlijk denkt dat het zich in een singletstaat bevindt. Tijdens de tweede stap oscilleert het radicaalpaar tussen singlet- en triplettoestand. De derde stap is dan recombinatie van het paar om een soort chemisch product of signaal te vormen. Het chemische product dat in deze laatste stap wordt gevormd is afhankelijk van het feit of het paar zich in een singlet- of triplet-toestand bevindt en dat is weer afhankelijk van het magnetische veld. Hierdoor kan het radicaalpaar als kompas fungeren.2

Zo is het hypothetisch mogelijk dat het chemisch product dat in de laatste stap gevormd wordt bijvoorbeeld een bepaalde neurotransmitter is waardoor het netvlies aan de hersenen doorgeeft onder welke hoek de vogel vliegt ten opzichte van het Aardmagnetisch veld. Dit zou kunnen betekenen dat vogels het Aardmagnetisch veld zien (Fig.1). Deze figuur is een complete panoramafoto van Frankfurt am Main waarin het Aardmagnetisch veld geprojecteerd is waardoor wij een indruk kunnen krijgen van wat de vogel ziet.

Fig. 1. Panoramisch uitzicht in Frankfurt am Main, Duitsland. De afbeelding toont het landschapsperspectief dat is vastgelegd vanaf een vlieghoogte van een vogel van 200 m boven de grond met de windrichtingen aangegeven. Het gezichtsveld van een vogel wordt gewijzigd door de magnetische filterfunctie. Ter illustratie tonen we het magnetische veld-gemedieerde patroon in grijstinten alleen (dat het waargenomen patroon zou weerspiegelen als het magnetische visuele pad volledig gescheiden is van het normale visuele pad) en toegevoegd aan het normale visuele beeld dat de vogel zou zien, als magnetische en normale visie dezelfde neuronale route zouden gebruiken in het netvlies. De patronen worden getoond voor een vogel die naar acht windrichtingen kijkt (N, NE, E, SE, S, SW, W en NW). De hellingshoek van het aardmagnetisch veld is 66°, een karakteristieke waarde voor de regio. Figuur overgenomen uit Cryptochrome and Magnetic Sensing

De vraag was in voorgaand blog of vogels die ‘s nachts migreren ook gebruik kunnen maken van deze magnetoceptie. Zij vangen hooguit fotonen van sterren. Is het echter bewolkt dan vallen er zeker geen fotonen op het netvlies van de vogels. Toch heeft men vastgesteld dat bijvoorbeeld roodborstjes ‘s nachts migreren.

Nu heeft een groep onderzoekers3 aangetoond dat de flavoproteine, bestaand uit het cryptochroom met daarop de chromofoor FAD (Flavine Adenine Dinucleotide), ook in het donker vrije radicalen met entangled elektronen kan voortbrengen. (Fig. 2)

Fig. 2. Een keten van drie tryptofaanresiduen, Trp400, Trp377 en Trp324 zijn betrokken bij de fotoreductie van de FAD-cofactor. Tijdens het elektronenoverdrachtproces worden radicaalparen gevormd tussen FADH en elk van de tryptofanen. De vorming van deze radicaalparen maakt een magnetisch veldeffect in cryptochroom mogelijk. Figuur overgenomen uit Cryptochrome and Magnetic Sensing

Het proces verloopt als volgt: gedurende de dag, onder invloed van blauw en UV-licht, wordt vanaf het compleet geoxideerde FAD half gereduceerd FADH en Trp (Tryptofaan) beiden met elk een vrij radicaal gevormd, een radicaalpaar dus. Onder invloed van groen licht wordt dit radicaalpaar (van het Radical Pair Model of Radical Pair Mechanism2) verder gereduceerd tot FADH. Dit molecuul kan daarop weer terugvallen tot het geoxideerde FAD via het gedeeltelijk geoxideerde FADH dat samen met een ander onbekend molecuul (Z; waarschijnlijk O2 met radicaal), opnieuw een vrije radicalenpaar produceert en dat gebeurt in het donker. (Fig. 3).

Fig.3 Redoxcyclus van FAD, de chromofoor van cryptochroom. De radicale paren staan tussen haakjes; gekleurde pijlen, fotoreductie door de respectieve golflengten; zwarte pijlen, lichtonafhankelijke reacties van re-oxidatie. ‘Z’ in het radicaalpaar gegenereerd tijdens re-oxidatie staat voor een radicaal waarvan de aard nog niet duidelijk is. Figuur overgenomen uit Light-dependent magnetoreception in birds: the crucial step occurs in the dark (The Royal Society 2016)

  1. Fysica en biologie in de kwantumwereld (voorgaand eigen blogbericht) 
  2. An open quantum system approach to the radical pair mechanism (Nature 2018)
  3. Light-dependent magnetoreception in birds: the crucial step occurs in the dark (The Royal Society 2016)

Fysica en biologie in de kwantumwereld

Na het laatste boek The Demon in the Machine van Paul Davies gelezen te hebben1, is mijn interesse opnieuw uitgegaan naar hoe ver het nu is met de kwantumbiologie. Eerder op dit blog, meer dan 7 jaar geleden, wijdde ik vier berichten aan het prachtige boek van Werner R. Loewenstein Physics in Mind2. Na de blogberichten 3, 4, 5, 6, opnieuw doorgelezen te hebben, zijn mij meer dingen duidelijk geworden, ook dankzij de commentaren waaronder die van Gert Korthof, Harry Pinxteren en Kees Jaspers. 

Het boek van Paul Davies The Demon in the Machine wordt vooral interessant vanaf hoofdstuk 5 (p.144). Daar beginnen we te zien hoe de deeltjesfysica verbonden is met biologie, levende organismen, cellen en moleculen via de kwantumwereld. 

Zoals Davies duidelijk uitlegt is er in de kwantumwereld van alles mogelijk, zoals kwantums die plotseling, zonder aanwijsbare reden, van richting veranderen of terugkaatsen, of aan de andere kant van een ‘muur’ belanden. Allemaal fenomenen waar we raar van zouden opkijken als ze in onze dagelijkse macro-wereld zouden plaatsvinden, maar die zich voortdurend afspelen op subatomair en moleculair niveau. Andere kwantum effecten waar geen equivalent voor bestaat in onze macro-wereld zijn bijvoorbeeld elektronen die op twee plaatsen tegelijk lijken te zijn. Het elektron deelt zich echter niet op en elk experiment dat het elektron probeert te lokaliseren zal het altijd op de ene of op de andere plaats terugvinden. Maar zolang deze lokalisatie niet plaatsvindt zijn er natuurkundige effecten die volgen uit deze onbepaalde positie. Er zijn paren fotonen die op meters afstand spontaan hun activiteit coordineren en moleculen die tegelijkertijd zowel met als tegen de klok indraaien. 

Het hart van de kwantummechanica is de dualiteit van golf en deeltje. Beide aspecten kunnen aangetoond worden, maar nooit tegelijk. Worden er door twee deeltjes golven veroorzaakt die elkaar versterken, dan spreekt men van coherentie. Bestaat er daarentegen een wirwar aan golven die elkaar niet kunnen versterken dan gaat het om decoherentie. Veel van de bovengenoemde vreemde kwantumeffecten komen voort uit coherentie van golven. Worden de golven verstoord dan verdwijnt de coherentie. Onder condities zoals die in biologische systemen doet zich snel decoherentie voor door het onophoudelijke thermisch bombardement van watermoleculen. Toch schijnen er situaties voor te komen waarbij er abnormaal langzame decoherentie bestaat onder speciale omstandigheden.

Zoals je zou kunnen verwachten heeft evolutie ook van dit fenomeen gebruik gemaakt om processen als overdracht van informatie te verbeteren en te versnellen. Loewenstein beschreef al in zijn boek uit 2013, dat de rodopsinen in ons oog gebruik maken van coherentie waarbij kwantummechanica het toelaat parallelle computing te bewerkstelligen en daarbij binnen 200 femtoseconden gelijktijdig enorme pakketten informatie over te dragen van de retina naar de achterliggende hersenkwabben. In het zenuwstelsel is  reeds sprake van een uiterst snelle overdracht van signalen op macroniveau (macromoleculair niveau), door neurotransmitters en voltage-dependent kanalen. Daar zou de transmissie van informatie via kwantummechanica nog eens bijkomen die enorme hoeveelheden zintuiglijke prikkels in parallel, dus in één keer, kan doorgeven aan het centrale zenuwstelsel. Dit laatste is vooralsnog een hypothese en is nog niet definitief aangetoond vanwege de overmaat aan thermische ‘ruis’ die decoherentie veroorzaakt.

Fig. 1 Kwantumtunneling

Paul Davies’ boek is uit 2019 en beschrijft dit soort kwantum fenomenen in fotosynthese, het reukorgaan en de ‘cryptochromen’ van het netvlies van migrerende vogels. 

In fotosynthese (bij groene zwavelbacteriën) wordt er als gevolg van het vangen van een foton met de juiste golflengte een ‘exciton’ gecreëerd. Dit geëxciteerde electron maakt gebruik van de mogelijkheid van quantumdeeltjes om op meer dan twee plaatsen tegelijk te zijn. Het neemt daarbij allerlei denkbare routes naar het reactiecentrum, iets dat mogelijk is omdat het zich ook als golf voortbeweegt. Dit gebeurt gedurende een interval waarin er coherentie heerst. Het gemeten interval is 200 femtoseconden. Gek genoeg geven recente studies aan dat een lichte thermische ‘ruis’ bevorderlijk kan zijn voor de efficiëntie van transmissie van energie. 

Bij de migratie van vogels is het de ‘intrinsieke spin’ van de elektronen die ervoor zorgt dat elk elektron een klein kompas is dat het aardse magnetische veld ‘voelt’. Dit kan gebeuren wanneer een atoom een foton absorbeert en daarmee een elektron van zijn orbit verplaatst wordt. Dat elektron wordt dan gevoeliger voor het aardse magnetische veld. Het oog van vogels wordt voortdurend door fotonen geraakt, dat is nu eenmaal hoe ogen werken (fotonen van de juiste golflengte laten ons kleuren zien). Maar hoe ‘voelt’ de vogel waar het magnetisch veld is? Dit wordt mogelijk gemaakt door ‘cryptochromen’. In deze proteïnen van het netvlies wordt een elektron verplaatst door een invallend foton, maar ten opzichte van een tweede elektron, dat in het cryptochrome achterblijft en waarmee het eerste entangled is, wordt het ‘losse’ elektron door het aardse magnetische veld scheefgetrokken ten opzichte van het achterblijvende entangled elektron. De vrije positieve radicalen die zo gecreëerd worden reageren met elkaar of vormen neurotransmitters die een signaal vormen naar de hersenen van de vogel.  

Fig. 2 Quantum birds: Shedding light on the mechanism of magnetic sensing in birds

In het geval van het reukorgaan, is er sprake van kwantumtunneling waarbij vibratie een energie kwantum produceert, een phonon – een kwantum van geluid – dat extra dimensies verleent aan het simpele model van docking van geurmoleculen op geurreceptoren. Daarmee is het mogelijk het enorme scala aan geuren, maar ook de gelijkenis van verschillende geuren te verklaren.

Kwantum mechanica heeft alles te maken met coherentie die verstoord wordt door de thermische ‘ruis’. Maar de chaos en de ruis worden ook door het leven uitgebuit met biologische demons. Niet alle ruis is hetzelfde; er bestaat ook ruis die kwantumprocessen juist stimuleert.

Werner Loewenstein denkt dat er veel biologische systemen zijn die gebaseerd zijn op kwantummechanica. Hij eindigt ermee dat we met onze digitale wereld verkeerdom bezig zijn. Kwantumcomputing is zoveel zuiniger en efficiënter vergeleken met digitale computing, dat hij er van overtuigd is dat de evolutie van leven er ruim gebruik van heeft gemaakt. Precies omdat ‘Lady Evolution’ altijd de zuinigste, meeste economische, weg kiest.

  1. Paul Davies – The Demon in the Machine – How hidden webs of information are solving the mystery of life – ALAN LANE Penguin Random House UK – 2019
  2. Werner R. Loewenstein – Physics in Mind – A Quantum View of the Brain – Basic Books, Perseus Books Group, New York – 2013

Vier oudere berichten op dit blog die het boek van Loewenstein bespreken

  1. Een voorzichtig begin in Biofysica
  2. Deel twee van een verkenning van de Biofysica
  3. Derde en laatste deel van een verkenning van de Biofysica
  4. Moleculaire demonen, de cognitive eiwitten

Deel twee van een verkenning van de biofysica

Een overzicht naar aanleiding van de tweede groep van zes hoofdstukken uit het boek ‘Physics in Mind; a quantum view of the brain’  (2013) van Werner R. Loewenstein

Dit deel beschouwt de drijfveer van evolutie ofwel mutatie. Vervolgens de ionenkanalen of digital demons die de neuronale ontwikkeling mogelijk maakte en daarmee de opkomst van het bewustzijn. Computing door computers en door neuronen. En uiteindelijk het specifiek menselijke, de ontdekking van de diepe werkelijkheid ofwel de rede.

Een getrouw beeld van de werkelijkheid (Paul Cezanne: Mont Saint Victoire)

Een getrouw beeld van de werkelijkheid? (Paul Cézanne: Le Mont Sainte-Victoire)

Loewenstein beschouwt de eiwitten als de driedimensionale extensie van het eendimensionale genoom. Het DNA is slechts een opslag van informatie en heeft eigenlijk geen enkele rol in cognitie. De eiwitten die erdoor gecodeerd worden vormen de driedimensionale cognitieve demons die de spil vormen van de vector van het leven: het opvangen van kwantums en het doorgeven van hun energie via de eiwitdemons in de reële driedimensionale wereld.

Het is desalniettemin het DNA dat aan de basis staat van de mutaties die de drijvende kracht achter de evolutie van complexiteit vormt. Mutaties zijn random. Ze worden veroorzaakt door random fotonen met hoge energie of door reactieve moleculen uit de omgeving waarin het DNA ligt. De Uv-straling, X- en γ-fotonen zijn de kwantum generatoren van mutaties. Deze fotonen kunnen de basen in het DNA beschadigen of indirect reactieve moleculen creëren die daarop met het DNA reageren. Ze zijn vrij zeldzaam omdat het DNA redelijk goed beschermd is tegen Uv-straling door het water in de cellen en omdat X- en γ-fotonen zeldzaam zijn. Bovendien wordt de schade zo goed mogelijk gerepareerd door reparatie-enzymen. De mutaties die hieraan ontsnappen, komen mogelijk via het RNA in de eiwitten terecht. Na een aantal berekeningen komt Loewenstein uit op een probabiliteit van 0.91 error-free transmission voor een proteïne van 1000 aminozuren. Hij beschouwt dit als hoog omdat het veel hoger ligt dan men zou verwachten uit statistische mechanica en dit is te danken aan de reparatiemechanismen. De cognitieve proteïnen en katalytische enzymen staan onder selectieve druk. Daarom is op basis van het niet coderende DNA of DNA dat codeert voor proteïnen met mechanische functie, uitgerekend dat het ‘mutatieritme’ per gen elke 200.000 jaar een nieuwe proteïnevariant voortbrengt. Als mensen zien wij hier dus weinig van, we zijn er ook nog maar kort, de meeste van onze genen bestonden al toen wij op het toneel verschenen. Deze genen waren reeds geoptimaliseerd door natuurlijke selectie. Deze fine-tuning is de ultieme functie van de random kwantum generator en zal nooit stoppen. Alles dat deze generator voortbrengt wordt in de driedimensionale wereld getest in competitie met andere mutanten.

Behalve de kwantum generator van mutaties is er een tweede generator van mutaties die alles te maken heeft met duplicaties en exon shuffling. Deze opereert naast de kwantum generator maar bezit daarentegen geen vast ritme. Hij gaat met sprongen te werk. Deze mutaties versnellen de moleculaire complexiteit enorm. De gedupliceerde DNA-fragmenten of genen kunnen door de kwantumgenerator verder af- of bijgesteld worden (fine-tuning) waardoor gedupliceerde genen kleine verschillen bezitten. Een voorbeeld daarvan zijn de vier verschillende rodopsinen van het zicht die elk een verschillende golflengte optimum bezitten. Ook belangrijk zijn composities van lange genen door het achter elkaar schakelen van duplicaten. Deze worden gekenmerkt door introns en zijn van groot belang voor de evolutie van hogere cel organisatie. Ze zouden wel eens aan de wieg van de meercellige organismen hebben kunnen staan.

Tot slot werken deze generators gratis. De kwantumgenerator betrekt informatie uit de kosmos (fotonen) en de tweede generator combineert al deze stukken DNA. Ze halen alles uit het DNA dat er in zit. Bovendien, zodra de driedimensionale spelers (de eiwitten) aan de beurt komen is er geen extra informatie nodig. Het vouwen van de proteïnen is helemaal afhankelijk van hun sequentie in aminozuren, ze vallen als vanzelf in hun basisconfiguratie.

Een ander kwantumaspect van de biologie betreft de metalloproteïnen zoals het cytochroom c. In het centrum van dit eiwit bevindt zich een atoom ijzer dat elektronen doorgeeft en waarbij de elektronen door een deel van het eiwit tunnelen. Men heeft lang gedacht dat het een puur chemisch proces was, maar John Hopfield toonde in 1977 aan dat het om electron tunneling gaat. Dit is een heus kwantumfenomeen en brengt een extreem hoge snelheid en efficiëntie voort. Deze door evolutie gegenereerde ‘uitvinding’ vormde ooit een hoogtepunt in elektrische transmissie. De metalloproteinen zijn zeer overvloedig aanwezig en ook sterk geconserveerd. Maar met het ontstaan van meercelligheid kon dit principe niet werken omdat de afstanden waarover getunneled zou moeten worden te groot zijn. Voor de transmissie van elektrische impulsen in neuronen kon dit systeem dus niet volstaan. Met de groei van de eerste neuronen heeft evolutie digital demons uitgevonden. Het zijn de ionenkanalen die dubbele cognitieve eenheden zijn: ze kunnen zowel onderscheid maken tussen de verschillende ionen als tussen de lokale voltages in het membraan. Ook hier zijn er geen informatiekosten aan verbonden. De passage van de ionen hangt af van het gradiënt dat door het metabolisme van de cel in stand wordt gehouden. De gevoeligheid voor het voltage is ingebouwd in het kanaal door middel van een sensor in de structuur van het eiwit. Het kanaal opent wanneer het membraanvoltage een bepaalde drempel bereikt. Het kanaal staat open of dicht, laat ionen door of niet en is daarmee een digital demon. Deze demons zijn nieuwkomers op het evolutionaire toneel, maar hadden groot succes. Dat is te zien aan hoe massaal ze voorkomen in de neuronen. Ze staan aan de basis van de snelle en efficiënte propagatie van het digitale elektrische signaal langs de neuronen. Daar zijn grote afstanden mee gemoeid en snelle computatie kan zo plaatsvinden.

Digital demons langs pijn-registrerende periferische neurons Uit Nature

Digital demons langs pijn-registrerende periferische neurons Uit Nature

De ontwikkeling van deze laatste demons liet de schijnbaar onbedwingbare ontwikkeling toe van het zenuwstelsel, en daarmee van het bewustzijn. Ook bewustzijn, waarvan wij denken daar het primaat van te bezitten, ontwikkelde zich langzaam. Het is zeker uitsluitend voorbehouden aan organismen met neuronen, maar wanneer en in welke dieren het precies verscheen is onduidelijk. De eerste neuronen zullen er twee of drie geweest zijn die samen informatie loops vormden en verantwoordelijk waren voor snelle reflexen. Enkele nazaten daarvan vinden we nog in de wervelreflex. Het aantal neuronen nam toe en vormde al gauw een neuronaal netwerk dat een geheugen en computercapaciteit had. Dit moet gezien worden in de tijdvector waarbij informatie uit het verleden het mogelijk maakt de toekomstige situatie in te schatten. Kortom het neuronale netwerk wordt een anticipeermachine. Om verwarring te voorkomen gaat dit niet over foresight in evolutie of foreseeing (voorspellen van) de toekomst, maar over forecognition. Deze kwaliteit is van groot belang in ‘the struggle for life’ en laat het toe een speer te lanceren naar een prooi, de aankomende seizoenen te herkennen aan de sterren of te zien dat er slecht weer op komst is. Loewenstein brengt na een uitgebreide beschrijving van de Universal Turing Machine, de conclusie naar voren dat ons brein geen exacte weergave van de realiteit geeft. Ons brein is een natuurlijke computer die gevormd is door natuurlijke selectie en die dient te overleven in ‘the struggle for life’. Het brein ontwikkelde zich om toekomstige gebeurtenissen te berekenen, en er op te anticiperen. Het brein dient niet zozeer een getrouw beeld van de wereld te geven, maar een bruikbaar beeld, bruikbaar voor het overleven en het welzijn van het organisme.

De enorme hoeveelheid aan informatie in ons geheugen zorgt ervoor dat er een immens groot aantal combinatorische mogelijkheden zijn die een nimmer ophoudende bron van inventiviteit vormen. Die capaciteit ontwikkelde zich zeer recent in de evolutie, wellicht niet eerder dan 40.000 jaar geleden met de verschijning van de Cro Magnon en zijn instrumenten. Dit vormt het laatste stadium van het neuronale netwerk. De mens kon zich eindelijk verheffen boven de zintuigelijke horizon en dingen zien die daarvoor aan hem verborgen waren. Het gaat dan niet om visueel zien, maar het zich bewust worden van een diepere realiteit, pure rede, the mind’s eye. Het is mogelijk uitsluitend met de rede wetenschappelijke ontdekkingen te doen.

h/t to Gert Korthof die onder mijn blog over Kwantumbiologie wees op dit boek.

Kwantumbiologie

Naar aanleiding van een discussie op het evolutieblog van Gert Korthof ontstond een zoektocht naar de rol van kwantummechanica in de biologie. Hierbij is er een probleem. Fysici en biologen lijken elkaar niet goed te verstaan zoals ook aangegeven wordt in een artikel in Nature. De opleiding tot biofysicus verloopt niet in daarvoor opgezette departementen, maar de studenten wisselen van het ene naar het andere departement om wat van fysica, chemie en biologie te leren. Deze stof moet dan geïntegreerd worden.

Schrödinger wees in 1944 in What is life? als eerste op de noodzaak tot het studeren van kwantumbiologie. Daarmee wordt de rol van de kwantummechanica in de biologie bestudeerd. Dit gebeurt veelal in processen als fotosynthese, visie en brownse motors in cellulaire processen om er paar te noemen. Het lijkt erop dat ook microtubulen in neuronen onderhevig zijn aan kwantumfenomenen waarmee het bewustzijn beïnvloed zou worden.

In de discussie op het evolutieblog van Gert Korthof kwam daarentegen de vraag naar voren of ‘kwantumtoeval’ of kwantumfenomenen, die het enige werkelijk bestaande toeval zouden vormen, aan de basis kunnen staan van biologische mutatie, ofwel mutatie van DNA, dat het toeval in de biologie vormt. Het antwoord daarop is ja. In 1963 publiceerde Löwdin een studie naar de rol van proton tunneling. Dit fenomeen is lastig in een blog weer te geven, maar heeft te maken de waterstofbindingen tussen complementaire basen van het DNA. De protonen worden daarbij door de twee tegenover elkaar liggende basen gedeeld. Daarbij kunnen er door proton tunneling, dat een kwantumfenomeen is, tautomeren ontstaan van deze basen, die bij de eerstvolgende replicatie met de verkeerde base combineren, waardoor er een mutatie insluipt. Het ziet er dus naar uit dat dit fenomeen verantwoordelijk is voor spontane mutaties. Deze zouden vervolgens aan de basis staan van somatische mutaties die leiden tot veroudering en kanker kunnen veroorzaken. Het lijkt mij dat dit fenomeen ook relevant is voor erfelijke mutaties aangezien er in de geslachtscellen ook replicatie voorkomt. Dit soort mutaties zijn spontaan en hebben niets te maken met door radiatie of chemicaliën geïnduceerde mutaties. Zij zijn op geen enkele wijze voorspelbaar.

Er kwam ook een ander onderwerp aan bod in de discussie bij Gert Korthof en dat is de mogelijkheid dat kwantummechanica aan de basis staat van de oorsprong van leven. Zoals Peter M. Hoffmann het zegt in zijn boek Life’s Ratchet:

“Life must begin at the nanoscale. This is where complexity beyond atoms begins to emerge and where energy transforms readily from one form to another. It is here where chance and necessity meet. Below the nanoscale, we find only chaos; above this scale only rigid necessity.

Er zijn blijkbaar niet veel mogelijkheden om het ontstaan van leven op dit niveau aan te tonen of ten minste te schetsen. Toch wagen sommige fysici zich daaraan, en één van hen, Paul C. W. Davies heeft het volgende bedacht. Ook hierbij gaat het om de zogenaamde non-trivial kwantumeffecten. Zijn hypothese is dat het leven direct ontstond uit de wereld van atomen zonder complexe intermediaire chemie. Aangezien het leven voornamelijk gekarakteriseerd wordt door replicatoren, stelt hij een klein simpel voorbeeldje van hoe zoiets in zijn werk zou kunnen gaan. Hij noemt dit Q-life en proponeert twee verschillende sequenties aan spins A en B in gecondenseerde materie. Deze twee sequenties interageren en als gevolg daarvan transmuteert B in A. Deze transmutatie ziet er uit als AB → AA. Omdat de sequentie B nu weggevaagd is, is deze transmutatie asymmetrisch en irreversibele. Dit ‘systeem’ zou op een bepaalde manier door de organische moleculaire wereld, waarin alles langzamer gaat maar ook grotere diversiteit oplevert, overgenomen worden.

Als bioloog is dergelijke taal moeilijk te begrijpen en ik heb ook geen idee of dit ooit empirisch aangetoond kan worden. Het is slechts een kleine poging om te laten zien hoe moeilijk het is een brug te slaan in de communicatie tussen biologen en fysici. Maar het is zeker mogelijk wanneer de kwantummechanica onderwezen wordt aan biologen.

Uit: Peter M. Hoffmann. Life’s ratchet. 2012

Paul C.W. Davies. Quantum aspects of life. Chapter 1: A Quantum origin of life? 2008

P.O. Löwdin Proton tunneling in DNA and its biological implications. REVIEWS OF MODERN PHYSICS VOLUME 35, NUMBER 3 JULY 1963

Hierbij bedank ik alle deelnemers aan de discussie bij Gert Korthof en in het bijzonder hemzelf.

Footnotes to Plato

because all (Western) philosophy consists of a series of footnotes to Plato

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più - blog personale di Paolo Minucci

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Why Evolution Is True

Why Evolution is True is a blog written by Jerry Coyne, centered on evolution and biology but also dealing with diverse topics like politics, culture, and cats.

Evolution blog

bij dezen en genen

The Finch and Pea

A Public House for Science

voelsprieten

* wonder van het alledaagse *

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

Glaswerk

Ongepoetst en uit de hand

Aad Verbaast

te gek voor woorden eigenlijk