Op zoek naar de klepel

bij dezen en genen

Tag archief: complexiteit

Deel twee van een verkenning van de biofysica

Een overzicht naar aanleiding van de tweede groep van zes hoofdstukken uit het boek ‘Physics in Mind; a quantum view of the brain’  (2013) van Werner R. Loewenstein

Dit deel beschouwt de drijfveer van evolutie ofwel mutatie. Vervolgens de ionenkanalen of digital demons die de neuronale ontwikkeling mogelijk maakte en daarmee de opkomst van het bewustzijn. Computing door computers en door neuronen. En uiteindelijk het specifiek menselijke, de ontdekking van de diepe werkelijkheid ofwel de rede.

Een getrouw beeld van de werkelijkheid (Paul Cezanne: Mont Saint Victoire)

Een getrouw beeld van de werkelijkheid? (Paul Cézanne: Le Mont Sainte-Victoire)

Loewenstein beschouwt de eiwitten als de driedimensionale extensie van het eendimensionale genoom. Het DNA is slechts een opslag van informatie en heeft eigenlijk geen enkele rol in cognitie. De eiwitten die erdoor gecodeerd worden vormen de driedimensionale cognitieve demons die de spil vormen van de vector van het leven: het opvangen van kwantums en het doorgeven van hun energie via de eiwitdemons in de reële driedimensionale wereld.

Het is desalniettemin het DNA dat aan de basis staat van de mutaties die de drijvende kracht achter de evolutie van complexiteit vormt. Mutaties zijn random. Ze worden veroorzaakt door random fotonen met hoge energie of door reactieve moleculen uit de omgeving waarin het DNA ligt. De Uv-straling, X- en γ-fotonen zijn de kwantum generatoren van mutaties. Deze fotonen kunnen de basen in het DNA beschadigen of indirect reactieve moleculen creëren die daarop met het DNA reageren. Ze zijn vrij zeldzaam omdat het DNA redelijk goed beschermd is tegen Uv-straling door het water in de cellen en omdat X- en γ-fotonen zeldzaam zijn. Bovendien wordt de schade zo goed mogelijk gerepareerd door reparatie-enzymen. De mutaties die hieraan ontsnappen, komen mogelijk via het RNA in de eiwitten terecht. Na een aantal berekeningen komt Loewenstein uit op een probabiliteit van 0.91 error-free transmission voor een proteïne van 1000 aminozuren. Hij beschouwt dit als hoog omdat het veel hoger ligt dan men zou verwachten uit statistische mechanica en dit is te danken aan de reparatiemechanismen. De cognitieve proteïnen en katalytische enzymen staan onder selectieve druk. Daarom is op basis van het niet coderende DNA of DNA dat codeert voor proteïnen met mechanische functie, uitgerekend dat het ‘mutatieritme’ per gen elke 200.000 jaar een nieuwe proteïnevariant voortbrengt. Als mensen zien wij hier dus weinig van, we zijn er ook nog maar kort, de meeste van onze genen bestonden al toen wij op het toneel verschenen. Deze genen waren reeds geoptimaliseerd door natuurlijke selectie. Deze fine-tuning is de ultieme functie van de random kwantum generator en zal nooit stoppen. Alles dat deze generator voortbrengt wordt in de driedimensionale wereld getest in competitie met andere mutanten.

Behalve de kwantum generator van mutaties is er een tweede generator van mutaties die alles te maken heeft met duplicaties en exon shuffling. Deze opereert naast de kwantum generator maar bezit daarentegen geen vast ritme. Hij gaat met sprongen te werk. Deze mutaties versnellen de moleculaire complexiteit enorm. De gedupliceerde DNA-fragmenten of genen kunnen door de kwantumgenerator verder af- of bijgesteld worden (fine-tuning) waardoor gedupliceerde genen kleine verschillen bezitten. Een voorbeeld daarvan zijn de vier verschillende rodopsinen van het zicht die elk een verschillende golflengte optimum bezitten. Ook belangrijk zijn composities van lange genen door het achter elkaar schakelen van duplicaten. Deze worden gekenmerkt door introns en zijn van groot belang voor de evolutie van hogere cel organisatie. Ze zouden wel eens aan de wieg van de meercellige organismen hebben kunnen staan.

Tot slot werken deze generators gratis. De kwantumgenerator betrekt informatie uit de kosmos (fotonen) en de tweede generator combineert al deze stukken DNA. Ze halen alles uit het DNA dat er in zit. Bovendien, zodra de driedimensionale spelers (de eiwitten) aan de beurt komen is er geen extra informatie nodig. Het vouwen van de proteïnen is helemaal afhankelijk van hun sequentie in aminozuren, ze vallen als vanzelf in hun basisconfiguratie.

Een ander kwantumaspect van de biologie betreft de metalloproteïnen zoals het cytochroom c. In het centrum van dit eiwit bevindt zich een atoom ijzer dat elektronen doorgeeft en waarbij de elektronen door een deel van het eiwit tunnelen. Men heeft lang gedacht dat het een puur chemisch proces was, maar John Hopfield toonde in 1977 aan dat het om electron tunneling gaat. Dit is een heus kwantumfenomeen en brengt een extreem hoge snelheid en efficiëntie voort. Deze door evolutie gegenereerde ‘uitvinding’ vormde ooit een hoogtepunt in elektrische transmissie. De metalloproteinen zijn zeer overvloedig aanwezig en ook sterk geconserveerd. Maar met het ontstaan van meercelligheid kon dit principe niet werken omdat de afstanden waarover getunneled zou moeten worden te groot zijn. Voor de transmissie van elektrische impulsen in neuronen kon dit systeem dus niet volstaan. Met de groei van de eerste neuronen heeft evolutie digital demons uitgevonden. Het zijn de ionenkanalen die dubbele cognitieve eenheden zijn: ze kunnen zowel onderscheid maken tussen de verschillende ionen als tussen de lokale voltages in het membraan. Ook hier zijn er geen informatiekosten aan verbonden. De passage van de ionen hangt af van het gradiënt dat door het metabolisme van de cel in stand wordt gehouden. De gevoeligheid voor het voltage is ingebouwd in het kanaal door middel van een sensor in de structuur van het eiwit. Het kanaal opent wanneer het membraanvoltage een bepaalde drempel bereikt. Het kanaal staat open of dicht, laat ionen door of niet en is daarmee een digital demon. Deze demons zijn nieuwkomers op het evolutionaire toneel, maar hadden groot succes. Dat is te zien aan hoe massaal ze voorkomen in de neuronen. Ze staan aan de basis van de snelle en efficiënte propagatie van het digitale elektrische signaal langs de neuronen. Daar zijn grote afstanden mee gemoeid en snelle computatie kan zo plaatsvinden.

Digital demons langs pijn-registrerende periferische neurons Uit Nature

Digital demons langs pijn-registrerende periferische neurons Uit Nature

De ontwikkeling van deze laatste demons liet de schijnbaar onbedwingbare ontwikkeling toe van het zenuwstelsel, en daarmee van het bewustzijn. Ook bewustzijn, waarvan wij denken daar het primaat van te bezitten, ontwikkelde zich langzaam. Het is zeker uitsluitend voorbehouden aan organismen met neuronen, maar wanneer en in welke dieren het precies verscheen is onduidelijk. De eerste neuronen zullen er twee of drie geweest zijn die samen informatie loops vormden en verantwoordelijk waren voor snelle reflexen. Enkele nazaten daarvan vinden we nog in de wervelreflex. Het aantal neuronen nam toe en vormde al gauw een neuronaal netwerk dat een geheugen en computercapaciteit had. Dit moet gezien worden in de tijdvector waarbij informatie uit het verleden het mogelijk maakt de toekomstige situatie in te schatten. Kortom het neuronale netwerk wordt een anticipeermachine. Om verwarring te voorkomen gaat dit niet over foresight in evolutie of foreseeing (voorspellen van) de toekomst, maar over forecognition. Deze kwaliteit is van groot belang in ‘the struggle for life’ en laat het toe een speer te lanceren naar een prooi, de aankomende seizoenen te herkennen aan de sterren of te zien dat er slecht weer op komst is. Loewenstein brengt na een uitgebreide beschrijving van de Universal Turing Machine, de conclusie naar voren dat ons brein geen exacte weergave van de realiteit geeft. Ons brein is een natuurlijke computer die gevormd is door natuurlijke selectie en die dient te overleven in ‘the struggle for life’. Het brein ontwikkelde zich om toekomstige gebeurtenissen te berekenen, en er op te anticiperen. Het brein dient niet zozeer een getrouw beeld van de wereld te geven, maar een bruikbaar beeld, bruikbaar voor het overleven en het welzijn van het organisme.

De enorme hoeveelheid aan informatie in ons geheugen zorgt ervoor dat er een immens groot aantal combinatorische mogelijkheden zijn die een nimmer ophoudende bron van inventiviteit vormen. Die capaciteit ontwikkelde zich zeer recent in de evolutie, wellicht niet eerder dan 40.000 jaar geleden met de verschijning van de Cro Magnon en zijn instrumenten. Dit vormt het laatste stadium van het neuronale netwerk. De mens kon zich eindelijk verheffen boven de zintuigelijke horizon en dingen zien die daarvoor aan hem verborgen waren. Het gaat dan niet om visueel zien, maar het zich bewust worden van een diepere realiteit, pure rede, the mind’s eye. Het is mogelijk uitsluitend met de rede wetenschappelijke ontdekkingen te doen.

h/t to Gert Korthof die onder mijn blog over Kwantumbiologie wees op dit boek.

De moleculaire jungle

Het voorgaande blogbericht behandelde het project ENCODE dat vorige week onder andere in Nature gepubliceerd werd. Door zo’n dertig publicaties tegelijk werden de verschillende onderdelen van het project gepresenteerd. Dit enorme project heeft hetzelfde en misschien wel meer belang dan het Menselijk Genoom Project, aangezien het niet alleen de tweedimensionale sequentie van het DNA weergeeft, maar zelfs een redelijk idee geeft van waar in het genoom bepaalde functies uitgevoerd worden. ENCODE is de encyclopedie van de DNA-elementen. Het gaat hierbij om functionele elementen, dat wil zeggen elementen die ‘biochemisch actief’ zijn. Er bestaat momenteel erg veel discussie over wat verstaan moet worden onder ‘functioneel’ en ‘biochemisch actief’.

De verschillende ‘functionele’ DNA-elementen. Uit Nature.

Zoals duidelijk weergegeven in de figuur zijn er acht verschillende functionele DNA-elementen. Twee daarvan verdienen speciale aandacht. Dat zijn de ‘DNase I hypersensitive sites’ en de ‘Transcription factor binding sites.’

Wanneer een site in het DNA hypergevoelig is voor de DNAase I, een enzym dat DNA degradeert, betekent dit dat het DNA op die plek vrij toegankelijk is. Het DNA zit hier niet strak ingepakt zoals bijna overal elders in het genoom. Op deze plekken kunnen ook sites blootgesteld worden waar transcriptie factoren zich kunnen binden en de transcriptie daarmee in gang zetten. (Transcriptie is de vorming van een complementaire streng van RNA met als blauwdruk het DNA.)

Uit Nature

Op bovenstaande figuur wordt duidelijk dat de vele verschillende transcriptie-factoren zich vaak op dezelfde plek binden. De bovenste regel laat zien waar zich de Dnase I hypersensitive sites bevinden. Dat wil zeggen de plekken waar DNA blootstaat aan het eventueel binden van transcriptiefactoren. De tweede regel laat zien waar de verzameling aan transcriptiefactoren zich bindt. De regels die erop volgen laten voor elke transcriptiefactor zien waar en met welke intensiteit deze zich aan het DNA bindt. Het is te zien dat vele transcriptiefactoren dezelfde sites binden met dezelfde of verschillende intensiteit. Dit betekent dat ze verruild kunnen worden, ze bezitten een zekere promiscuïteit. Met dit gegeven is het makkelijker een voorstelling te maken van een hele hiërarchie aan transcriptie-factoren. Ze zijn blijkbaar aanwezig in allerlei vormen en hebben een grotere of minder grote affiniteit voor de verschillende bindingsplekken. Het ziet er allerminst uit als een specifieke binding en er bestaat waarschijnlijk een heel scala aan transcriptiefactoren die zich wellicht in een soort brij of wolk rond het DNA bevinden. Dit heeft niets van doen met de perfecte machines die ons voorgeschoteld worden door de cleane lijsten van verschillende factoren en de animatiefilmpjes.

Het is zelfs erg waarschijnlijk dat er een enorme zooi is die bestaat uit allerlei varianten transcriptiefactoren. Dit geldt wellicht ook voor andere moleculen en er ontstaan rommelige interagerende netwerken. Het genoom is waarschijnlijk meer een jungle dan een fijn afgesteld klokwerk. De regulatie van transcriptie werkt ondanks de rommel en niet dankzij de complexiteit. Het is daarom onduidelijk hoe het signaal wordt onderscheiden met al deze ruis en hoe de regulatie precies verloopt. Het is wel duidelijk dat dit plaatje goed past in het idee wat ik zelf heb van de omgeving binnen en rond de cellen van ons lichaam. Het is een heel troebele en viskeuze omgeving waarin alle moleculen dicht op elkaar zitten en door affiniteit elkaar vinden. Vervolgens reageren ze op of met elkaar door veranderingen in conformatie waardoor ze geactiveerd worden. Dat heeft ook in dit geval bijzonder weinig te maken met de plaatjes en filmpjes waar meestal voor de duidelijkheid slechts een molecuul tegelijk in beeld is.

Hieronder een filmpje van transcriptiefactor in een bijzonder geordende omgeving.

Voor wie nog meer van dit soort filmpjes wil zien. The inner life of the cell:

Uit een blogbericht van finch and pea door Mike White het corresponderende artikel in Nature

Onheilsprofeten in de wetenschap

Na 5oo miljoen jaar van evolutie zijn de planten en dieren veel complexer geworden dan hun eencellige voorouders. Deze complexiteit heeft, zo blijkt, ook kosten en zou de huidige soorten weleens kunnen verzwakken. We zijn geneigd te denken dat evolutie steeds beter aangepaste organismen voortbrengt die daardoor ook een grotere ‘fitness’ hebben. Onderzoekers tonen aan dat de toekomst er weleens heel anders uit kan zien.

Evolutie van organismen wordt gedreven door natuurlijke selectie en ‘genetic drift’. Bij natuurlijke selectie gaat het om organismen met een grotere ‘fitness’ die hun genen doorgeven aan de volgende generatie die daardoor nog ‘fitter’ wordt. Evolutie kan daarentegen ook plaatsvinden door ‘genetic drift’, d.w.z. een mutatie wordt doorgegeven aan het nageslacht niet via natuurlijke selectie maar via willekeur. Een schadelijke of nadelige mutatie kan zich zo verspreiden in de genenpool van een populatie en wordt niet weggeselecteerd door natuurlijke selectie. Genetische drift is vooral van toepassing op kleine populaties. Ook al zijn wij mensen met 7 miljard individuen en bijna teveel voor de planeet, we zijn toch een relatief kleine populatie vergeleken met micro-organismen waarvan er miljarden in een vijver passen. Genetische drift is dus ook op ons van toepassing.

prion

fout opgevouwen prion

Eiwitten hebben vele functies in de cel. Zo vormen ze enzymen, structurele eiwitten of kanalen in de celwand bijvoorbeeld. Het goed functioneren van de eiwitten hangt af van zowel hun sequentie van aminozuren waaruit ze opgebouwd zijn als van hoe ze opgevouwen zijn ofwel van hun vorm. De hypothese van de studie is dat eiwitten vanwege genetische drift onstabiel kunnen raken, hun vorm gedeeltelijk verliezen, waarbij ze blootgesteld worden aan het omliggende water. Om dit te vermijden ontstaan er complexen met andere eiwitten waardoor er grote eiwitaggregaten kunnen ontstaan. Deze worden dan op hun beurt geselecteerd door natuurlijke selectie. Op deze manier ontstaat complexiteit binnen de cellen van organismen wat veel nieuwe mogelijkheden geeft voor het ontstaan van nieuwe functies. De eiwitten die door genetische drift onstabiel worden, wat normaal gesproken nadelig is, vormen eigenlijk een weg naar complexiteit.

Het gevaar dat de onderzoekers nu zien is dat door genetische drift en de daaruit voortkomende toename van instabiele eiwitten er steeds meer ziekten als die van Parkinson, Alzheimer en Creuzfeldt-Jakob zullen ontstaan aangezien dit allemaal ziekten zijn waarbij de eiwitten hun oorspronkelijke vorm verliezen, zich ophopen, andere eiwitten aanzetten hetzelfde te doen met als gevolg een complete blokkade van de celfunctie. Ze verwachten daarom dat genetische drift de stabiliteit van onze eiwitten aantast en ons een ziekelijke soort zal maken.

Uit: NatureNews.

Plaatje van internet.

Footnotes to Plato

because all (Western) philosophy consists of a series of footnotes to Plato

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più - blog personale di Paolo Minucci

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Why Evolution Is True

Why Evolution is True is a blog written by Jerry Coyne, centered on evolution and biology but also dealing with diverse topics like politics, culture, and cats.

Evolution blog

bij dezen en genen

The Finch and Pea

A Public House for Science

voelsprieten

* wonder van het alledaagse *

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

Glaswerk

Ongepoetst en uit de hand

%d bloggers liken dit: