Op zoek naar de klepel

bij dezen en genen

Tag archief: histonen

Lang leven

Er is aangetoond dat de eigenschap van een lang leven erfelijk kan zijn. Daarbij gaat het om het overerven van de manier waarop genen tot uitdrukking komen en niet zozeer om veranderingen in het DNA zelf. Deze erfelijkheid duurt overigens maar enkele generaties en daarom spreekt men ook wel van een ‘geheugen van lang leven’. De studie waarin dit aangetoond werd maakte gebruik van Nematoden (een soort kleine gladde wormen). De onderzoekers kijken er naar uit deze experimenten ook uit te voeren op dieren die dichter bij de mens staan zoals vissen en muizen.

Histonen

Histonen

Het onderwerp epigenetica is nog steeds controversieel. Bij epigenetica wordt er bepaald welke genen meer of minder tot uitdrukking komen. Het gaat daarbij hoofdzakelijk om twee mechanismen: methylatie en veranderingen in de histonen. Het eerste mechanisme voegt een methylgroep toe aan Cytosine (een van de vier basen van het DNA) en onderdrukt daarmee de expressie van een gen. De histonen zijn complexen van eiwitten die het DNA oprollen en samenpakken. Het DNA is daardoor meer of minder ‘los’ en wordt zodoende makkelijker of moeilijker tot expressie gebracht.

Dit zijn de epigenetische mechanismen die aan de basis staan van de differentiatie van onze weefsels tijdens de embryogenese. In elk type cel worden andere genen ‘aangezet’ waardoor we bijvoorbeeld over spiercellen of levercellen beschikken die toch allebei hetzelfde genoom bevatten.

De tweede vorm van epigenetica is de controversiele vorm. De moleculaire mechanismen zijn hetzelfde maar er wordt nu beweerd dat deze verantwoordelijk kunnen zijn voor ogenschijnlijk erfelijke eigenschappen. De kritieken van veel vooraanstaande biologen is vaak dat deze ‘overerving’ slechts enkele generaties duurt en dat men dus niet van erfelijkheid kan spreken. Bovendien worden de epigenetische kenmerken in elke eicel gewist (als ze daar ooit aanwezig waren). Er zou dus geen sprake kunnen zijn van overerving.

De studie op de Nematoden maakt gebruik van mutanten die een mutatie in een eiwit van de histonen hebben. Deze mutatie leidt tot een langer leven. Wordt deze mutant gekruist met een ‘gewone’ worm dan worden er onder andere wormen geboren die dit gen niet hebben (recessief homozygoot), maar die toch een langer leven hebben. Dit kenmerk wordt tot in de derde generatie meegevoerd. Dit experiment toont aan dat er echt sprake is van epigenetische erfelijkheid. De overerving van het langer-leven-kenmerk duurt slechts drie generaties. Het is al eerder aangetoond dat er in sommige gevallen epigenetische moleculaire veranderingen zijn die in de eicel bewaard worden. Dit zou dan zo’n geval zijn. De mutant heeft kennelijk een mutatie waarbij er ook in de eicellen epigenetische veranderingen plaatsvinden, die geërfd worden door zijn nakomelingen. Deze veranderingen worden tenminste tot in de derde generatie niet gewist.

Uit Nature: News and Views, Article

Tussen genotype en fenotype; epigenetica

Het genoom of DNA (de sequentie van opeenvolgende basen) van een organisme vormt zijn genotype. Alle informatie voor de ontwikkeling en het functioneren van een organisme liggen er in opgeslagen. Het fenotype daarentegen omvat alle waarneembare kenmerken van een organisme. De kleur van bloemblaadjes of de kleur van de ogen of haren zijn voorbeelden van het fenotype. Maar ook het arsenaal aan proteïnen of mRNA die zich in een cel bevinden bepalen met wat voor cel (een spier- of hersencel bijv.) en dus met wat voor een fenotype we te maken hebben.

Azalea met nieuw fenotype als gevolg van transposons

Azalea met nieuw fenotype als gevolg van transposons.

Nu ligt niet alle informatie die bepalend is voor het fenotype opgeslagen in het genotype. Er bestaan invloeden van buitenaf die bepalend kunnen zijn voor het fenotype. De epigenetica houdt zich bezig met alles, behalve het genotype, dat invloed heeft op het fenotype. Er bestaan erg veel mechanismen die onder epigenetica vallen. Om er een paar te noemen: de methylatie en de aminozurensequentie van de histonen, de RNAi die bepalend zijn voor het inactiveren van mRNA. Lees ook een voorgaand blog over de moleculaire mechanismen van epigenetica. Deze epigenetische kenmerken lijken ook overgeërfd te kunnen worden. Over dit laatste gegeven wordt nog steeds hevig gediscussieerd, omdat in de gevallen waarin deze epigenetische kenmerken overgeërfd zouden worden er sprake is van slechts enkele generaties. Omdat de epigenetica een zeer uitgebreid veld vormt, kan het onmogelijk in een blogje omschreven worden. Daarom kies ik voor een voorbeeld uit het laatste nieuws waarin een epigenetisch mechanisme planten beschermd tegen mogelijk schadelijk DNA namelijk de transposons.

In de laboratoriumplant Arabidopsis is in een recente studie aangetoond hoe het enzyme HDA6 een belangrijke rol heeft in het proces van ‘gene silencing’ ofwel het onderdrukken van mogelijk schadelijke transposons. Transposons of jumping genes zijn stukken DNA die zich vrij bewegen in het genoom, maar die daar behoorlijk veel schade kunnen aanrichten door bijvoorbeeld midden in een gen te belanden en het functioneren ervan permanent te onderbreken. Het ontdekte enzym bindt de transposons en modificeert de omliggende histonen. Samen met de methyltrasferase MET-1 die het DNA methyleert worden de transposons onderdrukt. Zo wordt het DNA beter ingepakt waardoor de transposons minder makkelijk kunnen verspringen en minder schade aan kunnen richten. Het fenomeen is al langer bekend maar deze studie laat zien welk enzym ervoor verantwoordelijk is.

Voor wie meer wil lezen over epigenetica kan naar het Europese Netwerk over epigenetica surfen. Meer informatie in het Engels is te vinden op het gastblog van Greg Mayer en de verwijzing daarin.

Plaatje van internet.

Jumping genes, epigenetica enzomeer…

Erfelijkheid werd traditioneel toegeschreven aan de sequentie van het DNA, ofwel aan het genotype (het wel of niet bezitten van bepaalde genen). Erfelijkheid werd uitgebreid bestudeerd door Mendel die, zonder iets van DNA te weten, het concept van gen introduceerde. Naar aanleiding van De Brief aan Darwin van Nico van Straalen, hoogleraar biologie aan de Vrije Universiteit van Amsterdam, waarin hij stelt dat: ‘men ontdekt [heeft] dat in een aantal gevallen eigenschappen die tijdens het leven worden verworven, overgedragen kunnen worden op de nakomelingen. en dat: Het blijkt dat het milieu in sommige gevallen een invloed heeft op het dna die blijkt over te erven naar de nakomelingen.’ en waarin hij zelfs spreekt over: ‘voorbeelden van ‘lamarckiaanse’ overerving‘, bleef er een zekere perplexiteit bestaan.

Lamarck beweerde volgens het klassieke voorbeeld dat bijvoorbeeld een giraffe een langere nek ontwikkelde omdat hij de lange nek intensief gebruikte of rekte. Daarom ontwikkelde hij zijn nek meer en gaf deze eigenschap door aan zijn nakomelingen. Darwin, daarentegen, zou beweren dat een giraffe die toevallig een langere nek had dan zijn soortgenoten, een voordeel had, waardoor hij beter overleefde en voor meer nakomelingen met de erfelijke eigenschap van een langere nek zorgde. Lamarck gaat er dus van uit dat het intensieve of juist verminderde gebruik van een orgaan/zintuig tot gevolg heeft dat dit orgaan/zintuig respectievelijk ontwikkelt of juist verdwijnt in de opeenvolgende generaties.

De laatste twintig jaar is er veel bekend geworden over eigenschappen die als gevolg

methylatie

methylatie

Van internet: DNA-methylation

van blootstelling aan bepaalde aspecten van de omgeving overgeërfd worden. Het kan bijvoorbeeld gaan om blootstelling aan chemicaliën of een gebrek aan goede voeding, die een verminderde vruchtbaarheid of een aanleg voor bepaalde ziekten kunnen bevorderen vanaf de tweede tot in de tiende generatie. Dit zouden inderdaad voorbeelden zijn van het milieu dat invloed heeft op de nakomelingen. Het gaat in deze gevallen vaak om methylatie van DNA. Gemethyleerd DNA bepaalt of genen wel of niet tot expressie komen. De methylatie van een gen kan ook overgeërfd worden, bijvoorbeeld gedurende de deling van een cel. Een delende levercel brengt twee dochtercellen voort die dezelfde genen als de moedercel moeten uitdrukken. Methylatie bepaalt in de opeenvolgende generaties levercellen welke genexpressie bij een levercel hoort en geeft deze weefselspecifieke genexpressie door aan de dochtercellen. Maar in de context van de brief gaat het om erfelijkheid in geslachtscellen, dus van generatie op generatie. Ook hier is methylatie erfelijk al moet die in een aantal gevallen opnieuw geprogrammeerd worden al naar gelang de sexe van de nakomeling. DNA-methylatie is een vorm van epigenetische mechanisme; het wordt niet gereguleerd door de DNA-sequentie. Ook histonen, grote eiwitcomplexen die het DNA meer of minder strak inpakken, regelen de expressie van genen. Samen met DNA-methylatie gaan ze onder de naam imprinting. Imprinting betekent dat bepaalde genen alleen in de nakomeling uitgedrukt worden al naar gelang ze van de moeder of juist van de vader zijn.

In dezelfde periode zijn er ook veel ontdekkingen gedaan betreffende RNA-interferentie. Ook RNA-interferentie maakt deel uit van de epigenetica. Normaal gesproken wordt DNA

jumping genes
Van Internet: Jumping genes

getranscribeerd naar mRNA en vervolgens wordt het mRNA vertaald in proteinen (eiwitten). Een vorm van regulering van DNA-expressie bestaat uit vorming van RNAi (i van interferentie) dat zich bindt aan het mRNA en het daardoor inactiveert of afbreekt, waardoor het niet meer kan coderen voor eiwitten. Het is namelijk belangrijk dat bepaalde enzymen (catalyserende eiwitten), nadat ze hun taak verricht hebben, geïnactiveerd worden. Dit fenomeen is in deze context erg belangrijk voor de inactivering van transposonen, ook wel ‘jumping genes’ (springende genen) genoemd. Het DNA van een retrotransposon wordt in RNA omgezet en vervolgens, met behulp van het enzym reverse-trascriptase weer teruggeschreven in een DNA, dat daarna ergens geplaatst wordt in het genoom en daar wellicht een gen blokkeert. Dit soort knip- en plakwerk is de oorzaak van veel erfelijke ziekten als diabetes en kanker. Het is dus van belang dat deze RNA’s van transposonen afgebroken worden. Om dit soort RNA’s te blokkeren zijn er verschillende RNAi’s zoals piRNA’s en siRNA’s. piRNA’s bevinden zich voornamelijk in het cytoplasma van eicellen (ongewervelden) en spermacellen (zoogdieren). Deze moleculen worden dus geërfd en kunnen tenminste gedurende de eerste celdelingen van de bevruchte eicel de ‘jumping genes’ tegenhouden.

Erfelijkheid van een eigenschap of kenmerk bij mensen wordt ook wel bepaald door te kijken naar de overeenkomsten of verschillen tussen twee eeneiige tweelingen ten opzichte van twee twee-eiige tweelingen. Een recente studie liet zien dat eeneiige tweelingen meer epigenetische factoren in gemeen hebben dan twee-eiige tweelingen.

Er bestaan nog vele andere epigenetische factoren die erfelijk zijn en die dus buiten de genetische code om functioneren. Toch blijft het (voor mij) moeilijk om Lamarck weer tevoorschijn te halen vanwege deze invloed van buitenaf. Lamarck’s theorie handelde namelijk niet alleen over invloed van buitenaf, maar ging uit van een specifiek mechanisme, het wel of niet gebruiken van organen, ledematen, zintuigen, functies enz. Vooralsnog kon ik daar in de mij beschikbare literatuur niets over vinden.
Een andere conclusie van de brief was dat: Veel moleculaire experimenten worden natuurlijk afgestraft, bijvoorbeeld misvormingen of monsters, maar bij het ontstaan van nieuwe bouwplannen van planten en dieren speelt de turbulentie in het genoom volgens mij de hoofdrol.
 Het principe van natuurlijke selectie is dus niet de oorzaak, maar het gevolg van evolutie. Als we willen verklaren waarom nieuwe soorten een bepaald bouwplan hebben, moeten we primair naar het dna kijken en hoe daarin de ontwikkeling van ei tot volwassene is vastgelegd.



De onderstreepte zin lijkt mij een te grote sprong.

Meer over jumping genes:


ScienceDaily: Jumping genes during development.
Jumping genes and gene loss.
Update 15 oktober: Epigenome mapped
Update 17 oktober: Nico van Straalen in Opinie van de volkskrant.
Update 22 oktober: DNA-methylation and autism
Update 29 januari 2010: Kennislink: Geboren om te veranderen

Footnotes to Plato

because all (Western) philosophy consists of a series of footnotes to Plato

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

Jonas Bruyneel

Literatuur/Journalistiek/Muziek

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più - blog personale di Paolo Minucci

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Evolutie blog

bij dezen en genen

The Finch and Pea

A Public House for Science

voelsprieten

* wonder van het alledaagse *

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

%d bloggers liken dit: