Op zoek naar de klepel

bij dezen en genen

Tag archief: energie

Moleculaire demonen, de cognitieve eiwitten

Zoals beschreven in ‘Physics in Mind’ van Werner R. Loewenstein, waar ik de drie voorgaande blogs aan wijdde (1,2,3,), wordt er informatie doorgegeven via cognitieve demonen of eiwitten naar andere intracellulaire structuren. Dit idee is eigenlijk al best oud en werd voor het eerst duidelijk beschreven door Jacques Monod, in zijn beroemde boek ‘Toeval en onvermijdelijkheid’ (1970) in het hoofdstuk over Maxwell’s demons. Daarin beschrijft hij hoe deze cognitieve moleculen te werk gaan om tot slot te verwijzen naar Maxwell’s demons.

Maxwells demon

Maxwells demon

Voor de duidelijkheid een korte schets van Maxwell’s demons. Deze ogenschijnlijke paradox werd ontworpen door de natuurkundige James Clerk Maxwell die het bestaan van microscopische duiveltjes veronderstelde. Een dergelijk duiveltje zou in staat zijn tussen twee door een schot van elkaar gescheiden compartimenten selectief moleculen met een hoge snelheden (met hoge energie) door te laten. Deze laatsten accumuleren zodoende aan een zijde van het schot en de temperatuur van het betreffende compartiment zou daardoor rijzen ten opzichte van het compartiment met langzame deeltjes. Dit zou allemaal zonder energieverbruik gaan. Nu is dit natuurlijk onmogelijk en inderdaad Léon Brillouin en Szilard begrepen dat het duiveltje onderscheid moet kunnen maken tussen de snelle en langzame deeltje. Dit vooraf verkrijgen van informatie kost energie die in dit geval gelijk is aan de vermindering van entropie als gevolg van de differentiële selectie van de snelle en langzame moleculen. Een andere zienswijze, meer vanuit de informatica-wereld, veronderstelt dat het duiveltje elke keer gereset dient te worden om opnieuw een snel molecuul te kunnen herkennen. En ook dat kost energie. Het duiveltje gaat dus niet gratis te werk.

Dit soort demons met cognitieve eigenschappen bevinden zich in onze cellen als eiwitten die een substraat herkennen door er een stereospecifieke en niet covalente binding mee aan te gaan. Zij zijn in staat deze moleculen uit een myriade aan andere moleculen te herkennen. Ze zijn dus in staat deze moleculen te herkennen en te discrimineren. In dit verband lanceert Monod ook het concept van teleonomie. Hij stelt dat levende organismen zich onderscheiden van alle andere systemen in het universum omdat ze gekenmerkt worden door een project. Teleonomie is een typische eigenschap van globulaire eiwitten (en enkele RNA’s) die in staat zijn eiwitten te herkennen in tegenstelling tot de invariantie van het ‘dode’ DNA. Ze herkennen hun substraat, ondergaan een verandering van conformatie (vorm), laten het eventueel afgeleverde of veranderde substraat weer los en nemen hun oorspronkelijke conformatie aan door de consumptie van energie in de vorm van een chemisch potentiaal (meestal een ATP). Dit is analoog aan het resetten van Maxwells demon.

Nu is er in het boek van Loewenstein geen enkele verwijzing naar Monod en dat is op zijn minst vreemd zoniet een ernstige nalatigheid. Deze demons staan aan de basis van de teleonomie ofwel het vergaren van informatie en de verwerking daarvan – een centraal punt in het boek van Loewenstein. Zoals Monod zegt gaat het hierbij om de gelijkstelling tussen informatie en negatieve entropie. Dit is voor de demons van essentieel belang omdat zij orde creëren. Elke demon voert een programma uit waarbij deze orde creëert en energie consumeert.

Uit: Physics in Mind. A Quantum View of the Brain (2013) door Werner R. Loewenstein (2013)

Toeval en onvermijdelijkheid (1970) Jacques Monod

Brownse beweging

myosine actineHet samentrekken van spierweefsel verloopt volgens zich razendsnel opeenvolgende cyclussen van binden en loslaten van myosine en actine. Myosine dat in ruststand ATP (de universele energiemolecule) gebonden heeft, maakt zich vast aan actine, hydroliseert het ATP in ADP en Pi en met de vrijgekomen energie knikt het molecuul zijn hoofd waardoor het myosine-filament schuift ten opzichte van het actine filament. Door dit mechanisme wordt de spier korter. Het gaat hierbij om myosine II (een van de twintig soorten) dat zich in onze spierbundels als filamenten organiseert, waarbij de reactieve koppen het werk verrichten.

In een artikel uit 2010 wordt beschreven hoe myosine II ook als enkel molecuul kan optreden samen met een filament van actine in een in silico experiment. In dit geval, waarin de myosine niet als filament samengebundeld is, beweegt deze losse molecuul (in het model) langs het filament van actine in plaats van een spier te laten samentrekken. Er wordt zo bekeken in hoeverre er gedurende het ‘lopen’ van de myosine een bijdrage wordt geleverd door Brownse beweging. Deze beweging is een random beweging van moleculen in een gas of vloeistof en is makkelijk te zien onder een microscoop. Deze beweging is door Einstein gekwantificeerd met de volgende formule ( x(t + dt) – x(t)) ^2 = 2D.dt. waarin x het punt in de ruimte is van het Brownse deeltje; t de tijd en D de diffusie-coëfficiënt die afhangt van grootheden als viscositeit en temperatuur van het medium.

F4.medium

Schematic view demonstrating how the motion of myosin is associated with ATP hydrolysis. The solid curve, E1, represents the energy landscape found in our study (see Fig. 2), while the dotted curves, E1* and E2, represent putative energy landscapes for the strong actin-binding (nucleotide-free) and the detached (ATP-bound) states, respectively. For convenience, different colors are used for the high-energy (magenta) and low-energy (blue) regions. Arrows constitute a possible sequence of myosin motion coupled with ATP hydrolysis: (a) unidirectional, stepwise Brownian motion as found in our study (see Fig. 1) in the presumed ADP·Pi-bound state, (b) transition into the strong binding state upon products (ADP and Pi) release, (c) dissociation from the actin filament upon new ATP binding, (d) essentially isotropic Brownian motion in the ATP-bound state, (e) reentry to E1 upon ATP hydrolysis (i.e., in the ADP·Pi-bound state).

De studie laat zien hoe de beweging van deze myosine langs het actine-filament stochastisch is, maar wel duidelijk een richting heeft. De auteurs concluderen dat er sprake is van een Brownse ratel die een substantiële bijdrage levert aan het omzetten van energie van de actomyosinemotor.

Ze beschouwen daarbij het energielandschap als een trechter die het actomyosinesysteem permitteren thermale ruis te verzamelen voor de voortbeweging van de myosine.

Eerder verscheen er hier een blogbericht over Brownse beweging in de context van het boek Life’s Ratchet van Peter M. Hoffmann. Dit bericht zet het accent wat meer op het feit dat er naar alle waarschijnlijkheid Brownse beweging te pas komt aan de beweging van motoreiwitten. Dit zou kunnen betekenen dat op de nanoschaal vitaliteit en dynamica van eiwitten aan de Brownse beweging te danken zijn. Dit kan implicaties hebben voor theorien over de bron van energie gedurende de formatie van de eerste macromoleculen.

Uit: PNAS, UniSci.

Footnotes to Plato

because all (Western) philosophy consists of a series of footnotes to Plato

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

Jonas Bruyneel

Literatuur/Journalistiek/Muziek

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più - blog personale di Paolo Minucci

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Evolutie blog

bij dezen en genen

The Finch and Pea

A Public House for Science

voelsprieten

* wonder van het alledaagse *

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

%d bloggers liken dit: