Op zoek naar de klepel

bij dezen en genen

Tag archief: archaea

De eerste ionenpompen en de oorsprong van leven

journal.pbio.1001926.g002 gradient

Figuur 1: Boven de barrière het zeewater en daaronder de basische waterstroom. Op de grens daarvan en in het gradiënt bevindt zich de eerste benadering van een cel met lekkend membraan waar de OH- en H+ passief door verspreiden. Een eerste protonkanaal exploiteert het gradiënt voor de vorming van ATP of de assimilatie van koolstof door fixatie van CO2. doi:10.1371/journal.pbio.1001926.g002

Nick Lane houdt zich al lang bezig met onderzoek naar de oorsprong van leven in hydrothermale bronnen. Daarover schreef ik verschillende blogs, waaronder deze voorgaande die de hypothese simpel weergeeft. Alkaline hydrothermale bronnen bestaan uit een poreuze schoorsteen waar door de wand een proton gradiënt bestaat. Het basische water met hoog pH (dus weinig H+; de protonen) stroomt door de schoorsteen naar buiten. Aan de buitenkant van de schoorsteen is het pH lager (met relatief hoge concentratie aan H+). Dit verschil zorgt ervoor dat er een gradiënt bestaat tussen de binnenkant en buitenkant van de schoorsteenwand. Nu stelt de hypothese dat zich hier de eerste cellen vormden. Deze konden zich nestelen in de poriën van de wand en gedurende de lange evolutie tijden membranen, RNA/DNA en eiwitten vormen – de basis ingrediënten van cellen.

In hun laatste publicatie, die rijk is aan prachtige illustraties, gaan Nick Lane en medewerkers nog

Rechts de evolutie van bacteriën en links de evolutie van Archaea vanaf LUCA

Rechts de evolutie van bacteriën en links de evolutie van Archaea vanaf LUCA.  doi:10.1371/journal.pbio.1001927.g001

 

verder terug in de tijd en tonen met behulp van modellen voor membranen aan dat er eerste een soort lekkend membraan bestond, waarbij protonen vrijelijk konden passeren. Deze passage of dit gradiënt kon uitgebuit worden door een protonpomp, verbonden aan een ATP-ase die ATP (het universele betaalmiddel in alle organismen) kon produceren of waarbij CO2 geassimileerd en gefixeerd werd. Toch stroomt in deze lekkende cellen het grootste deel van de binnengestroomde protonen snel weg. Ze pasten hun model aan en toonden aan dat een vermindering van de lekkage een sterker gradiënt door de celwand creëert. Deze verbetering ging vermoedelijk samen met het ontstaan van een pomp die zowel natrium als protonen pompte in tegenovergestelde richting – de zogenaamde natrium (sodium) proton antiporter of SPAP. Aangezien lipide membranen minder permeabel zijn voor Na+ permitteerde dit het ontstaan van een gradiënt voor natrium dat uitgebuit kon worden door een ATPase met promiscue activiteit ten aanzien van zowel natrium als protonen zoals het geval is voor primitieve ATPase. Aangezien lipide membranen minder permeabel zijn voor Na+ permitteerde dit het ontstaan van een gradiënt voor natrium dat, samen met het natuurlijk bestaande gradiënt voor H+, uitgebuit kon worden om energie uit op te halen. Deze 60% toename in beschikbare energie, de capaciteit ook in minder sterke gradiënten te kunnen overleven en de beter sluitende membranen zouden de toekomstige cellen in staat moeten stellen andere ecologische niches te bewonen.
De SPAP gaf een groot voordeel gedurende de lekkende fase en bleef een goede uitvinding ook voor de meer sluitende membranen getuige het feit dat de fylogenese van dit eiwit aantoont dat het in LUCA, de laatste gemeenschappelijke universele voorouder van de cellen reeds aanwezig geweest moet zijn. Pas nadat er ook actieve pompen ontstonden werd het voordelig de membranen te dichten. Ook voor dit belangrijke facet hebben de onderzoekers modellen gemaakt. Het voert ver om ook dat helemaal te beschrijven. Het komt erop neer dat de verschillen in membranen tussen twee belangrijke domeinen van het leven, de Archaea en de bacteriën, voortkomen uit LUCA die waarschijnlijk een membraan van eenvoudige vetzuren had. De Archaea en bacteriën tonen elk kleine maar belangrijke verschillen tussen hun membranen, die te herleiden zijn naar een gemeenschappelijke voorouder met een lekkend membraan. Kortom, de identiteit van LUCA wordt volgens deze theorie steeds duidelijker. Hoe dit te rijmen is met het idee dat virussen aan de oorsprong stonden van de cellen en hun DNA zou eens beter belicht kunnen worden. Ook de RNA-wereld, die zijn oorsprong zou hebben in geothermale bronnen, laat zich moeilijk integreren in deze visie van de oorsprong van leven. Het wordt tijd dat wetenschappers als Nick Lane, Eugene Koonin, Patrick Forterre eens met elkaar gaan overleggen.

Het laatste nieuws uit Nature meldt dat men van plan is de zeebodem te gaan ontginnen op mineralen. Dit zou een gevaar kunnen betekenen voor de ecosystemen rondom de hydrothermale bronnen. We beginnen ons net de juiste vragen te stellen en het potentiele studieobject dreigt vernietigd te worden. Dat zou zonde zijn.

Uit: Sojo V, Pomiankowski A, Lane N (2014) A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biol 12(8): e1001926. doi:10.1371/journal.pbio.1001926
Nature News: Health check for deep-sea mining. European project evaluates risks to delicate ecosystems.

Een levende zee

Een week geleden was er in Londen een symposium over de oorsprong van het leven. Daar heeft men gedurende een dag gesproken over al het nieuws rond onze laatste gemeenschappelijke voorouder (LUCA = Last Universal Common Ancestor). LUCA wordt in het algemeen gezien als één cel en dan ook nog eens als een enkel exemplaar. Maar het ontstaan van het leven zou wel eens op een heel andere manier gegaan kunnen zijn.

Levende oceaan

Het mega-organisme: de zee.

Na vele jaren onderzoek is het nog steeds erg moeilijk te bepalen hoe het eerste leven eruit moet hebben gezien. Er zijn geen fossielen van de eerste cellen. Daarom zijn er erg veel verschillende theorieën over. Men ging er vooralsnog van uit dat het om een heel primitieve, eenvoudige cel ging. Er werd daarbij gedacht aan een bacterie. Dat was immers de meest rudimentaire cel die bekend was. Recente studies tonen echter aan dat LUCA reeds een redelijk complexe cel heeft moeten zijn, met eigen organellen. De bacteriën en Archaea zouden daar van afstammen. (Archaea vormen één van de drie domeinen van het leven en zijn net als bacteriën eencellig). Daarbij zouden bacteriën en Archaea een aantal functies of structuren verloren hebben en zo een gestroomlijnde versie van de oorspronkelijke LUCA zijn.

Nu hebben een aantal onderzoekers gekeken naar de stamboom van verschillende eiwitten van uiteenlopende organismen binnen de drie domeinen van het leven ofwel de Archaea, de bacteriën en de eukaryoten (alle planten en dieren zoals wijzelf). Daarbij keken ze naar de driedimensionale structuur van het eiwit in plaats van naar de sequentie. De sequentie kan namelijk enorm veranderen gedurende de evolutie en het is moeilijk daar een stamboom van te maken. Ze konden van zo’n 7 tot 11 % van de eiwitten van 420 organismen bepalen dat deze in al deze organismen voorkomen. Dat betekent dat deze eiwitten ook aanwezig geweest moeten zijn in onze laatste gemeenschappelijke voorouder. Deze eiwitten waren in staat voedingsstoffen af te breken en te assimileren, maar enzymen (katalyserende eiwitten) voor de bouw en het aflezen van het DNA ontbraken.

Als LUCA een cel was dan moet deze ook een membraan gehad hebben. Onderzoekers baseerden zich dit keer op membraaneiwitten om te concluderen dat het een heel simpel membraan moest zijn dat voornamelijk uit isoprenoiden bestond. Deze membranen waren behoorlijk lekkend en veel stoffen bewogen er vrij doorheen. LUCA moet ook organellen gehad hebben aangezien deze in alle drie de domeinen voorkomen.

Aangezien enzymen voor de bouw en het aflezen van DNA ontbraken is het waarschijnlijk dat LUCA geen DNA bezat, maar RNA. Deze laatste macromolecule is erg onstabiel maar er is wel van aangetoond dat deze enzymatische eigenschappen kan hebben. Dit RNA zou op zijn beurt meer kopieën van zichzelf of ander RNA kunnen maken. Er wordt al langer gespeculeerd over een mogelijke RNA-wereld. Dat wil zeggen een wereld waarin RNA de enige molecule was die informatie kon opslaan. De translatie van RNA naar eiwit was niet erg precies en LUCA moet erg slordige kopieer- en translatiemechanismen gehad hebben.

Tot zover LUCA als cel. Het nieuwe aan de gepresenteerde inzichten is dat de primordiale cellen met hun lekkende membranen veel genen en eiwitten uitwisselden. Er bestond als het ware een globale zee aan genetisch materiaal en eiwitten waarvan alle cellen oppikten wat ze nodig hadden, zonder enige vorm van competitie. Deze hele zee was één groot mega-organisme dat overleefde door deze globale distributie van alle benodigde moleculen: een levende zee.

Pas nadat de rudimentaire cellen alles zelf konden produceren waren ze in staat los van de gemeenschap te leven. Dit laatste is ongeveer wat er zo’n 2,9 miljard jaar geleden gebeurd moet zijn ; een moment in de evolutie van het leven dat overeenkwam met het verschijnen van de eerste zuurstof.

Uit NewScientist.

Met dank aan Rob van der Vlugt.

LUCA en virussen

We zijn gewend te denken aan een boom van leven waarin er bij de stam ‘lage’ organismen voorkomen en bovenaan ‘hogere’ organismen. Zo maken velen nog de fout te beweren dat wij van de aap afstammen, terwijl wij afstammen van een gemeenschappelijke voorouder met de aap. De aap is dus net zo ‘ver’ geëvolueerd als wij mensen. Dit geldt ook voor onze afstamming van de eerste ééncellige. Vaak wordt er gedacht dat alle levende organismen afstammen van een bacterie zoals we die nu kennen. Nu is er een groep Franse wetenschappers die al sinds enige jaren hypothesen formuleert over de wortel van de boom van het leven. Onze laatste gemeenschappelijke voorouder (LUCA; last universal common ancestor) zou niet een bacterie zijn, maar een protoeukaryote. Deze hypothetische cel bevatte een kern met RNA.

 

De hoofddomeinen van het leven bestaan uit prokaryoten (bacteriën en Archaea) en eukaryoten. De prokaryoten (= ‘vóór’ de celkern) hebben (nog) geen nucleus terwijl de eukaryoten (=’echte’ celkern) deze wel bezitten. Eukaryoten vormen alle ééncellige en meercellige organismen waarvan de cel een nucleus bevat, dat wil zeggen alle organismen die geen bacteriën of Archaea zijn. De term prokaryoten is volgens de auteurs gedateerd omdat de term prokaryoten suggereert dat deze laatste organismen vóór de eukaryoten leefden.

 

De drie virussen, drie domeinen theorie. Gestippelde

lijnen geven RNA cellijnen aan en vette lijnen geven

DNA cellijnen aan. FvA, FvB en FvE zijn de grondlegger

virussen voor Archaea, Bacteriën en Eukarya resp.

Uit artikel van Patrick Forterre (zie onderaan).

De hypothetische LUCA is volgens de auteurs een cel met een nucleus die in plaats van DNA zoals in alle tegenwoordige eukaryoten een kern met RNA bevatte. Deze hypothese is gebaseerd op de theorie van de RNA-wereld. Van deze protoeukaryoten stammen de eukaryoten en de prokaryoten af. De prokaryoten zouden de eigenschap van de celkern verloren hebben terwijl de eucaryoten deze behouden hebben. Het eerste leven wordt voorgesteld als een gemengde gemeenschap van allerlei verschillende protoeucaryoten die met minichromosen van RNA een nog onduidelijke verhouding hadden tussen fenotype en genotype.

 

Het RNA zou in deze eerste organismen omgezet zijn in DNA door virussen. Virussen, die in de RNA-wereld ook uit RNA bestonden en deze ‘jonge’ cellen infecteerden, vormden DNA omdat dit beter bestand was tegen de verdedigingsmechanismen van de cel. Deze hypothese wordt versterkt doordat vele virussen ook vandaag nog genen voor enzymen bevatten die van belang zijn voor de synthese van precursoren van het DNA. Een dergelijk DNA-virus zou zijn litische vermogen kunnen verliezen en permanent in de cel aanwezig kunnen blijven als lineair of circulair chromosomaal element (plasmiden). Via retrotranscriptie zou het cellulaire RNA deel hebben kunnen gaan uitmaken van het groeiende plasmide. Dit DNA zou stabieler zijn en het zou voor de cel een selectief voordeel betekenen al zijn RNA om te zetten in DNA.

 

Omdat Eukaryoten, Archaea en bacteriën alle drie verschillende ribosomen hebben wordt er voorgesteld dat ze afstammen van protoeucaryoten die ooit door drie verschillende virussen geïnfecteerd werden. Het gaat hier duidelijk om theorieën die goed kunnen verklaren hoe er drie zulke verschillende domeinen van de boom van het leven konden ontstaan uit één gemeenschappelijke voorouder. Tot nu toe was men daar nog niet in geslaagd.

 

Uit:

 

Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: A hypothesis for the origin of cellular domain

Patrick Forterre

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450140/

 
The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner
Nicolas Glansdorff, Ying Xu and Bernard Labedan
http://www.biology-direct.com/content/3/1/29#B11


Footnotes to Plato

because all (Western) philosophy consists of a series of footnotes to Plato

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più - blog personale di Paolo Minucci

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Why Evolution Is True

Why Evolution is True is a blog written by Jerry Coyne, centered on evolution and biology but also dealing with diverse topics like politics, culture, and cats.

Evolution blog

bij dezen en genen

The Finch and Pea

A Public House for Science

voelsprieten

* wonder van het alledaagse *

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

Glaswerk

Ongepoetst en uit de hand

%d bloggers liken dit: