Op zoek naar de klepel

bij dezen en genen

Tag archief: abiogenese

Het eerste leven ontstond in hydrothermale bronnen

Het ziet er naar uit dat de al 80-jaar oude theorie van het ontstaan van leven uit de prebiotische oersoep op de schop gaat. Een nieuwe studie lanceert de hypothese dat het eerste leven waarschijnlijk ontstaan is in de onderzeese hydrothermale bronnen. Hier bevinden zich reeds geochemische gradienten, die het transport van protonen bewerkstelligen, de eerste bron van energie voor leven. Alle huidige organismen halen hun energie uit intracellulaire chemiosmose.

De oude theorie van de oersoep baseert zich o.a. op het beroemde experiment van Miller-Urey, dat ervan uitging dat deze oersoep, met methaan en ammonia, in contact stond met de atmosfeer en waarin de bron van energie gevormd werd door electrische ontladingen, die de bliksem nabootsten. De glazen bol waarin dit experiment zich voltrok, bracht (uiteindelijk) bijna al de ons bekende aminozuren voort. Aminozuren vormen de bestanddelen van eiwitten, de bouwstenen van iedere cel en organisme.

De nieuwe studie lanceert een geheel andere hypothese, die al enigszins in de lucht hing

hydrothermal vents
Van internet: Hydrothermale diepzeebronnen

(zie ook onderstaand filmpje). Ze stellen allereerst voor dat het leven uit gassen ontstond (H2, CO2, N2, H2S) en dat de energie voor het eerste leven verzameld werd uit geochemische gradienten die zich bevinden in kleine onderling verbonden poriën van speciale hydrothermale bronnen. Een dergelijk soort honingraat van microscopische gaatjes kan gezien worden als een geheel aan katalytische kleine cellen, waar zich vervolgens lipiden, proteinen en nucleotiden gevormd kunnen hebben.

Deze nieuwe ideeën baseren zich op die van Michael J. Russell over alkaline diepzeebronnen die chemische gradienten produceren. Deze komen sterk overeen met de protonengradienten in de membranen van levende organismen. De eerste organismen maakten waarschijnlijk gebruik van deze protonengradienten om het universele energiemolecuul ATP (of een eenvoudiger alternatief) aan te maken. Mettertijd evolueerden de organismen naar een eigen intern protonengradient. De onderzoekers stellen dat de eerste electronendonor H2 en de eerste acceptor CO2 was. (Er bestond nog geen O2 in de atmosfeer en het water.) Ze veronderstellen dus dat het eerste leven aanvankelijk energie haalde uit de geochemische gradienten, waarna ze deze inbouwden en eigenmaakten om onafhankelijk te worden van de diepzeebronnen.

Een dergelijke hypothese, ook al is die minder biochemisch van aard, werd gesuggereerd in dit filmpje (met dank aan ing. St Hawk) over een lezing van David Gallo met prachtige bewegende beelden van hydrothermale bronnen en de omringende fauna. Hier leven bacteriën die resistent zijn tegen hoge temperaturen (180°C) en H2S ‘ademen’. De wetenschappers uit het filmpje beweren dat deze levensvormen wel eens de oudste organismen op Aarde kunnen zijn.


Bron: ScienceDaily
Update 13-02-2010: artikel in NewScientist

Advertenties

DNA-eiwit hybride repliceert in vitro

Er wordt veel onderzoek gedaan naar de spontane vorming van moleculen die essentieel zijn voor het ontstaan van leven. Zo heeft het Miller-Urey experiment aangetoond dat alle 22 aminozuren, bouwstenen van eiwitten ofwel proteinen, in een zogenaamde oersoep, bij bepaalde temperatuur en met electrische ontlading, zich spontaan kunnen vormen uit eenvoudige moleculen als waterdamp, ammoniak, methaan en waterstof. Het ontstaan van nucleotiden daarentegen, de bouwstenen van DNA en RNA, heeft nooit op analoge wijze aangetoond kunnen worden, ook al is er een recent onderzoek dat laat zien hoe deze moleculen zich wel spontaan kunnen vormen onder specifieke omstandigheden (zie ook voorgaand blog: De spontane vorming van nucleotiden)

Al het leven wat we kennen is gebaseerd op de replicatie van DNA, de transcriptie van RNA en de translatie van RNA in eiwitten met behulp van enzymen (catalyserende eiwitten of proteinen). Eiwitten, ofwel diezelfde enzymen, komen voort uit de translatie van RNA. Om die reden blijft de vraag bestaan wat er nu eerder was; de eiwitten of RNA/DNA. Sinds vele jaren is de hypothese van een ‘RNA-wereld’ populair, omdat het RNA zowel de genetische code kan bewaren, voor eiwitten kan coderen, als reacties kan catalyseren (zie ook voorgaand blog Het ribosoom: van een RNA- naar een eiwitwereld).

Veel onderzoeken die trachten te achterhalen welke van deze moleculen er eerst waren, werken met vereenvoudigde dna-moleculen. in een onderzoek, dat 12 juni in science gepubliceerd is, laten onderzoekers zien dat de ruggegraat van DNA, die normaal opgebouwd is uit fosfaten en suikers (zie afbeelding), met een dimeer van aminozuren vervangen kan worden. Dit hybride, opgebouwd uit een base en twee aminozuren, kan een soort van streng vormen die zich bindt met echt DNA en daar ook de complementaire code van weerspiegelt. Er zijn vier verschillende basen in het DNA, die door hun volgorde de genetische code bepalen. Deze basen die als met ‘klitteband’ bevestigd zijn aan een cysteine-residu (dat een aminozuur is), kunnen makkelijk veranderd worden terwijl ze een complementaire streng aan het vormen zijn met echt DNA. Deze streng kan ook de complementaire code bepalen van een nieuw hybride-streng, hetgeen aantoont dat deze moleculen zelfreplicerend zijn.

Het ribosoom: van een RNA- naar een eiwitwereld.

De evolutietheorie beschrijft en verklaart de evolutie van de levende organismen door natuurlijke selectie, maar geeft geen verklaring voor het ontstaan van dit leven op Aarde. Er zijn vele experimenten die aangetoond hebben dat uit een oersoep van inorganische elementen, organische moleculen kunnen ontstaan onder bepaalde omstandigheden die de atmosfeer of de oceanen van de vroege Aarde nabootsen. Het is op deze manier mogelijk aminozuren, nucleotiden en koolhydraten te creeëren die op hun beurt korte ketens van resp. polypepeptiden (eiwitten), polynucleotiden (RNA en DNA), en ribosen (suikers) kunnen vormen. Het is nog niet experimenteel aangetoond dat deze moleculen ook inderdaad de ingewikkelde eiwitten, DNA- of RNA-moleculen vormden die we in levende organismen tegenkomen, maar het is niet moeilijk te veronderstellen dat na een lange incubatietijd en met behulp van hoge temperaturen en/of catalyserende substraten er reacties plaats konden vinden, die inderdaad deze macromoleculen voortbrachten. Zie voor een uitgebreide beschrijving van abiogenese het blog van Qabouter.

ribosoom
 Plaatje van subuniteit van ribosoom geleend van
Wikipedia. Oranje: enkelstrengs RNA. Blauw: eiwit

Een volgende stap in deze ontwikkeling is de vorming van zelfreplicerende en/of catalyserende moleculen. Het belangrijkste catalyserende molecuul dat zich in alle levende organismen bevindt is het ribosoom. Een ribosoom is gevormd door twee subuniteiten en bevat zowel RNA als eiwitten. Het is verantwoordelijk voor de ‘vertaling’ van het mRNA in eiwitten. Het mRNA is een molecuul dat (meestal) een exacte kopie is van een gen op het DNA. Het DNA dat zich in de celkern bevindt wordt gekopieerd in mRNA dat de celkern verlaat. In het cytoplasma wordt het mRNA door de ribosomen gelezen en vertaald in eiwitten zoals enzymen, antilichamen en structurele proteinen. Het is lang een discussiepunt geweest of de eerste macromoleculen eiwitten waren of RNA. Eiwitten zijn vaak enzymen die reacties kunnen catalyseren, iets wat nodig is voor de synthese van RNA bijvoorbeeld. Het feit dat de catalyserende kern van het ribosoom uit RNA bestaat, waardoor het molecuul ook wel ribozyme genoemd wordt, heeft vele wetenschappers ervan overtuigd dat de oersoep op een bepaald moment een RNA-wereld was, waarin RNA zowel een coderend als en catalyserend molecuul was.

Van deze oermoleculen is natuurlijk allang geen spoor meer te vinden; er zijn geen moleculaire fossielen. Het kan dus nooit direct aangetoond worden dat er bijv. een RNA-wereld was.

Het ribosoom, dat zo’n 4 miljard jaar geleden onstaan moet zijn, is hetzelfde in alle procaryoten (bacteriën) en verschilt van dat van eukaryoten (dieren en planten), die op hun beurt allemaal hetzelfde cytoplasmatische ribosoom hebben.

Een studie in Nature met als titel Hypothesis beschrijft hoe de tegenwoordige ribosomen ontstaan zouden kunnen zijn uit de aggregatie van kleinere domeinen. Deze studie laat zien hoe de subuniteit van het ribosoom 23S (van prokaryoten) achtereenvolgens ontdaan kon worden van 59 onderdelen, zonder dat de stabiliteit van de driedimensionele structuur van het overgebleven deel werd aangetast. Werden deze onderdelen weer langzaamaan toegevoegd, dan hervond het proto-ribosoom een steeds grotere sintesecapaciteit. Elke component voegde zich pas aan het voorgaande geheel toe als dit een verhoogde stabiliteit of efficiëntie betekende. De hypothese is dat gedurende de eerste stadia van evolutie het ribosoom uitsluitend uit RNA bestond (ribozyme) en pas nadat het efficiënt genoeg was om ook eiwitten te produceren werden deze laatsten ook belangrijk op aarde en in de structuur van het ribosoom.

Dit zou de eerste stap geweest kunnen zijn van een RNA-wereld naar een eiwitwereld, maar het blijft slechts een hypothese…

Footnotes to Plato

because all (Western) philosophy consists of a series of footnotes to Plato

Zwervende gedachten

Een filosoof over argumentatie, biologie, handelingstheorie en wat hem verder invalt

Jonas Bruyneel

Literatuur/Journalistiek/Muziek

mjusicamanti.wordpress.com/

per amanti della vera musica

SangueVivo

Ancora solo un battito in più

Microplastics

INTERREG MICRO PROJECT

Scientia Salon

An archived blog about science & philosophy, by Massimo Pigliucci

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Vita da simbionte

perché collaborare è talvolta meglio che combattere

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Evolutie blog

bij dezen en genen

The Finch and Pea

The Public House for Science...

voelsprieten

* wonder van het alledaagse *

the aphid room

All about aphids... not simply bugs|

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

%d bloggers liken dit: