Op zoek naar de klepel

bij dezen en genen

Oorsprong van mitose en meiose, een theorie over de evolutie van de eukaryoot en seks

Na in het voorgaand blog de evolutie van geslachtsverschillen in Volvox bekeken te hebben, botste ik in Wikipedia tegen een verwijzing naar artikelen van Philip John Livingstone Bell aan. Zijn werk is puur theoretisch en behandelt de oorsprong van de eukaryotische cel, van mitose, meiose en dus het ontstaan van seks. Eukaryoten zijn alle cellen en organismen die wij gewoonlijk waarnemen, ze hebben een celkern. Prokaryoten zijn voornamelijk bacteriën. Virussen vormen een apart hoofdstuk, maar lijken een enorm belangrijke zo niet fundamentele rol te hebben gespeeld in het ontstaan van de eukaryotische cel zoals Bell in zijn theorie laat zien.

Een blog biedt eigenlijk niet genoeg ruimte voor een uitgebreide verhandeling van mitose en meiose. Kort gezegd is mitose de celdeling in de eukaryotische cel waarbij de lineaire chromosomen (DNA) eerst verdubbeld en vervolgens eerlijk verdeeld worden over de dochtercellen. De meiose daarentegen bestaat uit twee delingen: een die de chromosomen verdubbelt (waarna er het essentiële fenomeen van crossing –over plaatsvindt waarbij de genen van vaders en moeders kant uitgewisseld worden), en een tweede die zonder verdubbeling van de chromosomen plaatsheeft, waardoor er een zogenaamd gehalveerd genoom ontstaan ofwel haploïde cellen, de geslachtscellen.

Mitose in door virus geïnfecteerde cellen.  a of alfa corresponderen met + en - in de tekst

Mitose van geïnfecteerde cellen en ‘binary fission’ van niet geïnfecteerde cellen.

Dit ingewikkelde maar vrijwel universele mechanisme (althans voor wat betreft de eukaryoten) is volgens Bell ontstaan uit drie organismen: een virus, een Archaea (een soort oerbacteriën zonder dubbel membraan) en bacteriën. De Archaea, of de voorloper ervan, bood het cytoplasma dat het virus kon infecteren en waar het zijn genetisch materiaal kon deponeren en repliceren met behulp van eigen polymerasen en/of reverse transcriptase en ribosomen of met die van de gastheer. Een bacterie, waarschijnlijk de alfa-proteobacterie, vormde de eerste mitochondriën.

De theorie van Bell stelt dat het virus met zijn RNA of DNA de gastcel infecteerde, waarna het lineaire chromosoom (met centromeer) van dit virus repliceerde en, zodra deze cel fuseerde met een niet geïnfecteerde cel, zich deelde zodat de twee chromosomen zich over de twee dochtercellen verdeelden. Door meerdere infecties met verschillende maar verwante virussen zou het aantal chromosomen toegenomen zijn. Deze proto-eukaryotische, of eigenlijk reeds volwaardige eukaryotische cellen konden daardoor licht verschillen in genetische opmaak (we noemen ze + en – cellen met elk n chromosomen). Hun cellen konden fuseren (lees ‘bevruchten’) en zo een cel voortbrengen met 2n chromosomen. Zodra daar wederom twee celdelingen op volgden hebben we opnieuw twee haploïde cellen + en twee haploïde cellen -. Dit is exact hetzelfde als meiose.

Meiose in geinfecteerde cellen. a en alfa corresponderen met + en - in de tekst

Meiose in geïnfecteerde cellen. a en alfa corresponderen met + en – in de tekst

Dit is een pure theorie die zich echter wel baseert op wat men nu nog terugziet in de tegenwoordige wereld tijdens infectie met het pox-virus. De theorie stelt dus niet alleen dat zowel mitose als meiose een ‘uitvinding’ zou zijn die dankzij de virussen heeft kunnen voorvallen, maar ook dat de celkern van oorsprong vrijwel uitsluitend viraal RNA of DNA bevatte. Op het blog van Gert Korthof is er een levendige discussie over of virussen nu wel of niet als levende organismen moeten worden beschouwd. Patrick Forterre, een gevierd viroloog, is daar een voorstander van en gezien hun mogelijke belang in het ontstaan van mitose en meiose, hebben de virussen wel een speciaal ereplaatsje verdiend.

Uit: Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Philip John Livingstone Bell. Journal of Theoretical Biology 243 (2006) 54–63.

 

Evolutie van sekse in Volvox

Naar aanleiding van een discussie op het evolutieblog van Gert Korthof, waarin opnieuw Joris van Rossum ter sprake kwam, is dit nieuws wel te moeite waard om te signaleren. Joris van Rossum beweerde in zijn proefschrift dat de evolutietheorie of, specifieker, natuurlijke selectie het ontstaan van sekse niet kon verklaren. Als je over alles dat wetenschappelijk niet verklaarbaar is een proefschrift kunt schrijven dan zou dat heel veel proefschriften opleveren. Het is veel interessanter om te zoeken naar een verklaring van het ontstaan van seks. Omdat seks ofwel de meiose die daarbij hoort grote variatie oplevert is het mogelijk dat dit de rede is waarom seks gehandhaafd blijft (al zijn er organismen die het kenmerk verloren hebben). Van het ontstaan van meiose bestaan natuurlijk uitsluitend theoretische modellen, die erg interessant zijn, en wellicht in een later blogbericht aan de orde komen.

In deze context is het aardig om de ontwikkeling van sekse te bekijken in Volvox. Nu zijn er ééncellige algen die na meiose hun haploïde cellen opnieuw combineren tot diploïde cellen via isogamie: de haploïde geslachtscellen zijn niet van elkaar te onderscheiden en tegenovergestelde seksen worden aangeduid met + en -. In Volvox, een meercellige alg, bestaat daarentegen anisogamie; de geslachtcellen vormen echte ei- en zaadcellen, waarbij de eicel relatief groot en onbeweeglijk is en de zaadcel klein is en zich met flagellen voortbeweegt.

Volvox (hier gevonden)

Volvox (hier gevonden)

Onderzoekers bestuderen Volvox carteri, een prachtige meercellige alg die uit wel 2.000 cellen kan bestaan, al langer omdat ze een sleutel kan vormen tot het onderzoek naar het ontstaan van meercellig leven. Meercellig leven kan zich niet simpelweg delen en moet voor reproductie gebruik maken van seksen. Volvox leeft in zoet water en ontwikkelde zo’n 200 miljoen jaar geleden meercelligheid. In het verleden bestudeerde men reeds de eencellige alg, Chlamydomonas reinhardtii, en vergeleek de genetische opmaak tussen ‘mannetjes’ (-) en ‘vrouwtjes’ (+). C. reinhardtii wordt gekenmerkt door isogamie, waarbij de geslachtscellen aangeduid worden met + en -. Ouder onderzoek stelde reeds vast dat deze geslachtverschillen bepaald worden door het gen MID (van minus dominance; een gen voor een domein van een transcriptiefactor). Is het aanwezig dan is de sekse -, en is het afwezig dan is de sekse +. Men vroeg zich daarop af of en in hoeverre dit gen bepalend zou kunnen zijn voor de anisogamie en plaatste het MID-gen, dat ook in Volvox carteri aanwezig is, in vrouwelijke cellen. In mannetjes werd het gen uitgezet (met knock-out). En inderdaad, het MID-gen maakte mannetjes van de vrouwtjes en de mannetjes zonder MID-gen veranderden in vrouwtjes. Ieder van deze getransformeerde seksen waren in staat zich met succes te reproduceren met ‘gewone’ volvox.

Het gen, dat voor een deel van een transcriptiefactor codeert, is dus niet alleen bepalend voor de simpele ‘polariteit’ van de sexen, maar determineert, via een genetisch netwerk, ook de secondaire karakters van deze ‘polariteit’, namelijk de anisogamie.

Bovenstaande is een recent onderzoek en verklaart op zich niets van het ontstaan van seks, ofwel het ontstaan van meiose. Over dit laatste zijn heel interessante theorieën ontwikkeld waarin bacteriën, archaea en virussen een rol lijken te hebben gespeeld. Dat is eigenlijk waarop men zou moeten scherpstellen, wil je het ontstaan en het behoud van seks kunnen verklaren. Dit onderzoek geeft slechts een beeld van hoe anisogamie bepaald kan worden in deze algen. Meercelligheid is meerdere keren uitgevonden dus anisogamie waarschijnlijk ook.

Uit: Geng S, De Hoff P, Umen JG (2014) Evolution of Sexes from an Ancestral Mating-Type Specification Pathway. PLoS Biol 12(7): e1001904. doi:10.1371/journal.pbio.1001904

 

 

Lag de oorsprong van leven bij virussen?

three_viruses_mimi_pandora_pith

Foto door Chantal Abergel en Jean-Michel Claverie Drie recent ontdekte reuzevirussen — mimivirus (boven), pandoravirus (midden) and pithovirus (onder)

De theorieën over de oorsprong van het leven lopen uiteen, maar over één ding is men het eens. Er bestond ooit een RNA-wereld waarin er zowel polymeren als ribozymen bestonden, beide opgebouwd uit RNA. De laatste katalyseerde de replicatie van de eerste en zo ontstonden er de eerste replicatoren. Nu bevatten onze cellen DNA (deoxyribonucleic acid) als opslag voor informatie, terwijl veel verschillende soorten RNA (ribonucleic acid) bijvoorbeeld als boodschapper (RNAm) of drager van aminozuren (RNAt) dient. Er is blijkbaar een moment geweest waarop het RNA omgezet is in DNA. Nu geldt het dogma in de biologie dat DNA omgeschreven wordt in RNA dat op haar beurt weer afgelezen wordt voor de vorming van eiwitten. Er bestaat slechts één uitzondering, en dat is het enzym reverse transcriptase dat alleen door retrovirussen gecodeerd wordt. (Er is een andere reverse transcriptase die telomeren synthetiseert, zie de reactie van Gert Korthof).

Al een tijdje bestudeert de viroloog Patrick Forterre de mogelijkheid dat retrovirussen aan de oorsprong van de eerste cellen heeft bijgedragen. Ik schreef al eerder over zijn werk en theorie en de details kun je in dit eerdere blog lezen. Hij stelt dat de retrovirussen DNA maakten en daarmee cellen infecteerden die vervolgens dit stabielere DNA gebruikten als informatieopslag.

Nu is er recent een enorm virus ontdekt, het pithovirus, dat nog groter is dan veel bacteriën. De afmeting is meer dan 1,5 micron en het draagt zo’n 500 genen waarvan vele niet gerelateerd zijn aan de ons reeds bekende genen. Voordat dit virus werd gevonden, wist men al van andere grote virussen zoals het mimivirus en pandoravirus die ook veel niet gerelateerde genen bevatten. Zo langzaamaan begon zich een andere theorie te vormen.

Men dacht vroeger dat virussen zich later hebben ontwikkeld dan cellen, omdat alle toen bekende virussen voor hun replicatie of vermenigvuldiging afhankelijk waren van cellen. Het zou dus wel eens omgekeerd kunnen zijn, namelijk, dat virussen eerder ontstonden dan cellen. Ze zouden in eerste instantie in de RNA-wereld geleefd hebben die bestond uit zelfzuchtige RNA’s die de boventoon gingen voeren. Deze werden omsloten door capsiden, bestaande uit proteïnen.

Een argument voor de The Virus World Theory stelt dat virussen genetisch gezien een grotere diversiteit hebben dan cellen. Waren ze afgeleid van cellen, dan zou er een kleinere diversiteit zijn dan die we aantreffen bij cellen. Eugene Koonin is voorstander van The Virus World Theory, terwijl Patrick Forterre denkt dat virussen hun opmars maakten nadat er voorlopers van bacteriën, Archaea en Eukaryoten, die hij protoeucaryoten noemt, hun intrede deden. Hij onderstreept daarbij dat virussen op het toneel verschenen voordat LUCA (Last Universal Common Ancestor) bestond. Abergel en Claverie, een echtpaar van virologen, beweren daarentegen dat virussen afstammen van uitgestorven cellijnen. Er was geen unieke cellijn volgens hen, maar een waren een heleboel verschillende cellijnen die allemaal uitgestorven zijn. De virussen bevatten nog steeds de antieke genen van deze uitgestorven cellen.

Kortom, er is in Frankrijk een flinke discussie gaande rond dit onderwerp. Daar wordt heel wat ge-e-maild over virussen. Het zou leuk zijn als deze discussie wat meer open was, zodat wij hem konden volgen. Misschien hebben ze allemaal gelijk en verschenen virussen tegelijk met cellen, met het daarop volgende uitsterven van bepaalde cellen waar antieke infecterende virussen nog steeds een overblijfsel van zijn. Het zou zomaar kunnen.

Uit: Hints of Life’s Start Found in a Giant Virus. QuantaMagazine

 

 

 

Kwantumbiologie

Naar aanleiding van een discussie op het evolutieblog van Gert Korthof ontstond een zoektocht naar de rol van kwantummechanica in de biologie. Hierbij is er een probleem. Fysici en biologen lijken elkaar niet goed te verstaan zoals ook aangegeven wordt in een artikel in Nature. De opleiding tot biofysicus verloopt niet in daarvoor opgezette departementen, maar de studenten wisselen van het ene naar het andere departement om wat van fysica, chemie en biologie te leren. Deze stof moet dan geïntegreerd worden.

Schrödinger wees in 1944 in What is life? als eerste op de noodzaak tot het studeren van kwantumbiologie. Daarmee wordt de rol van de kwantummechanica in de biologie bestudeerd. Dit gebeurt veelal in processen als fotosynthese, visie en brownse motors in cellulaire processen om er paar te noemen. Het lijkt erop dat ook microtubulen in neuronen onderhevig zijn aan kwantumfenomenen waarmee het bewustzijn beïnvloed zou worden.

In de discussie op het evolutieblog van Gert Korthof kwam daarentegen de vraag naar voren of ‘kwantumtoeval’ of kwantumfenomenen, die het enige werkelijk bestaande toeval zouden vormen, aan de basis kunnen staan van biologische mutatie, ofwel mutatie van DNA, dat het toeval in de biologie vormt. Het antwoord daarop is ja. In 1963 publiceerde Löwdin een studie naar de rol van proton tunneling. Dit fenomeen is lastig in een blog weer te geven, maar heeft te maken de waterstofbindingen tussen complementaire basen van het DNA. De protonen worden daarbij door de twee tegenover elkaar liggende basen gedeeld. Daarbij kunnen er door proton tunneling, dat een kwantumfenomeen is, tautomeren ontstaan van deze basen, die bij de eerstvolgende replicatie met de verkeerde base combineren, waardoor er een mutatie insluipt. Het ziet er dus naar uit dat dit fenomeen verantwoordelijk is voor spontane mutaties. Deze zouden vervolgens aan de basis staan van somatische mutaties die leiden tot veroudering en kanker kunnen veroorzaken. Het lijkt mij dat dit fenomeen ook relevant is voor erfelijke mutaties aangezien er in de geslachtscellen ook replicatie voorkomt. Dit soort mutaties zijn spontaan en hebben niets te maken met door radiatie of chemicaliën geïnduceerde mutaties. Zij zijn op geen enkele wijze voorspelbaar.

Er kwam ook een ander onderwerp aan bod in de discussie bij Gert Korthof en dat is de mogelijkheid dat kwantummechanica aan de basis staat van de oorsprong van leven. Zoals Peter M. Hoffmann het zegt in zijn boek Life’s Ratchet:

“Life must begin at the nanoscale. This is where complexity beyond atoms begins to emerge and where energy transforms readily from one form to another. It is here where chance and necessity meet. Below the nanoscale, we find only chaos; above this scale only rigid necessity.

Er zijn blijkbaar niet veel mogelijkheden om het ontstaan van leven op dit niveau aan te tonen of ten minste te schetsen. Toch wagen sommige fysici zich daaraan, en één van hen, Paul C. W. Davies heeft het volgende bedacht. Ook hierbij gaat het om de zogenaamde non-trivial kwantumeffecten. Zijn hypothese is dat het leven direct ontstond uit de wereld van atomen zonder complexe intermediaire chemie. Aangezien het leven voornamelijk gekarakteriseerd wordt door replicatoren, stelt hij een klein simpel voorbeeldje van hoe zoiets in zijn werk zou kunnen gaan. Hij noemt dit Q-life en proponeert twee verschillende sequenties aan spins A en B in gecondenseerde materie. Deze twee sequenties interageren en als gevolg daarvan transmuteert B in A. Deze transmutatie ziet er uit als AB → AA. Omdat de sequentie B nu weggevaagd is, is deze transmutatie asymmetrisch en irreversibele. Dit ‘systeem’ zou op een bepaalde manier door de organische moleculaire wereld, waarin alles langzamer gaat maar ook grotere diversiteit oplevert, overgenomen worden.

Als bioloog is dergelijke taal moeilijk te begrijpen en ik heb ook geen idee of dit ooit empirisch aangetoond kan worden. Het is slechts een kleine poging om te laten zien hoe moeilijk het is een brug te slaan in de communicatie tussen biologen en fysici. Maar het is zeker mogelijk wanneer de kwantummechanica onderwezen wordt aan biologen.

Uit: Peter M. Hoffmann. Life’s ratchet. 2012

Paul C.W. Davies. Quantum aspects of life. Chapter 1: A Quantum origin of life? 2008

P.O. Löwdin Proton tunneling in DNA and its biological implications. REVIEWS OF MODERN PHYSICS VOLUME 35, NUMBER 3 JULY 1963

Hierbij bedank ik alle deelnemers aan de discussie bij Gert Korthof en in het bijzonder hemzelf.

Verdwenen plastic

Macro- en microplastics, 'The Microbead wave' hier gevonden

Macro- en microplastics, ‘The Microbead wave’ hier gevonden

 

Een zojuist gepubliceerde studie in PNAS (Proceedings of the National Academy of Science) laat zien dat er in de oceanen veel minder plastic zit dan werd verwacht. Zo’n 99% minder, ofwel 100 keer minder dan tot nu toe gedacht werd. Het moet er direct bij vermeld worden dat in deze studie wordt gekeken naar kleine fragmenten, het microplastic dat kleiner is dan 5 mm. Voor wat betreft het grove plastic zijn er geen duidelijke gegevens beschikbaar. Er wordt vermeld dat dit microplastic het grootste deel vormt van het plastic dat in de oceanen drijft.

De onderzoekers namen tussen 2010 en 2011 meer dan 3000 monsters over de hele wereld. Dankzij deze proeven en voorgaande publicaties van andere auteurs konden ze vaststellen en bevestigen dat de grootste concentratie plastic zich in de centra van de 5 gyres bevindt, waarvan de grootste, the North Pacific Gyre, ook het meeste plastic bevatte. Dit strookte dus met de verwachtingen, maar ze observeerden ook dat de totale hoeveelheid plastic slechts tussen de 7.000 en 35.000 ton zit. De tot nu toe gemaakte schattingen zijn gebaseerd op de productie van plastic en het percentage daarvan dat in de zee eindigt sinds 1970 en liggen rond de miljoen ton. Het is duidelijk dat er, tenminste met de methode die gebruikt is door deze onderzoekers, slechts een fractie van wordt teruggevonden.

Het plastic dat in de zee drijft kan in fragmenten uiteenvallen onder invloed van onder andere mechanische erosie en Uv-straling. De onderzoekers lieten zien dat vooral de kleinste fragmenten, kleiner dan 2 mm, verdwenen waren.

Wat is er met dit plastic gebeurd? Er worden vier mogelijkheden in beschouwing genomen:

1. Het plastic wordt uit de gyres gecentrifugeerd en belandt op de kust.

2. Het microplastic valt uiteen in nog kleinere deeltjes, ofwel nanoplastic.

3. Het plastic wordt overgroeid door organismen waardoor het zinkt.

4. Het wordt door organismen opgegeten.

Het eerste punt wordt als onwaarschijnlijk beschouwd, aangezien de microplastics als het ware in de gyre ‘gevangen’ zitten. Het tweede punt is daarentegen goed mogelijk. Men heeft immers al gezien dat er bacteriën zijn die samen met algen een communiteit vormen of ‘plastisphere’. Deze ‘plastisphere’ is misschien in staat het plastic af te breken tot miniem kleine deeltjes tot in de orde van grootte van één micron, waardoor het niet in de netten blijft zitten. Het derde punt is ook een mogelijkheid: in het geval het plastic begroeid raakt met organismen zinkt het, althans tot op een zekere hoogte, al naar gelang de dichtheid ofwel de diepte van het water. Men heeft al wel gezien dat op grotere diepte het plastic haar organismen weer verliest omdat daar minder licht is of omdat door de verzuring kalk afgebroken wordt. Het zou vervolgens weer omhoog gaan. Dit punt wordt daarom niet waarschijnlijk geacht. De vierde mogelijkheid wordt als de meest waarschijnlijke gezien. Het microplastic kan worden opgegeten door zoöplankton of door vissen. Het zoöplankton en de vissen worden op hun beurt weer gegeten door grotere organismen waardoor het verdwijnt of op de zeebodem terecht komt met de dood van deze dieren. Het plastic kan ook terechtkomen in de ontlasting van de vissen die het niet verteren waardoor het relatief snel naar de bodem zakt.

Aangezien hier geen studie naar gedaan is, benadrukt men tot slot dat het de hoogste tijd wordt en ander uit te zoeken. Tot het zover is moeten we er natuurlijk voor zorgen dat er zo min mogelijk plastic in de oceanen belandt. Het is zeker nodig er minder van te consumeren maar, men moet er vooral voor zorgen dat het niet als zwerfvuil via de rivieren in de oceanen terecht komt. Kortom, goed opruimen na de openluchtfeesten en picknicks. Bovendien bestaat er het project van The Ocean Cleanup waaraan iedereen met een donatie aan kan bijdragen. Dit project voorziet binnen 2020 de gyres schoon te maken, zodat er zich in ieder geval geen extra microplastics meer kunnen vormen en kunnen ‘verdwijnen’ in de magen van vissen en vogels.

 

Een circulaire economie

Het is een droom, een circulaire economie. Het idee is biologisch materiaal in te zetten voor consumptieartikelen, het daarna te recyclen en te hergebruiken totdat het weer biologisch afgebroken kan worden. Ook het hergebruik van niet-biologisch materiaal zou gerecycled moeten worden om zodoende geen deel uit te maken van de biosfeer. Dit laatste proces is geïnspireerd op de biologische wereld waarin alles biologisch afbreekbaar is.

Tot nu toe is ons consumptiesysteem deel van een lineair proces. Dit betekent gebruik van eindige bronnen als olie voor het vervaardigen van wegwerp consumptiemateriaal dat daarna op stortplaatsen of in verbranders eindigt. Beperken we ons tot plastic dan zien we dat nu (juni 2014) slechts 12% van het plastic gerecycled wordt, 38% eindigt op stortplaatsen en 50% wordt verbrand en als energiebron gebruikt voor centrales (Waste Management World) , zie ook voorgaande blogbericht). Vooralsnog overstijgt de productie en consumptie van wegwerp materiaal de capaciteit van recyclen. Niet alleen is dit een lineair proces, het vaak giftige of anderszins schadelijke materiaal komt ook nog eens terecht in de biosfeer. Dit lineaire proces is dus voor 100% van het plastic nog steeds van kracht. Al het nieuw geproduceerde plastic blijft voor 50% als zodanig blijft bestaan, de rest wordt verbrand.

Het moet ook duidelijk onderstreept worden dat bij het recyclen van plastic er geen sprake is van waarlijk recyclen. Er wordt namelijk op grote schaal wegwerpplastic geproduceerd. Dit is het zogenaamde ‘virgin’ plastic dat essentieel lijkt te zijn voor de vervaardiging van plastic flessen. Na gebruik en als het zogenaamd gerecycled wordt (in 12% van de gevallen), worden er andere producten van gemaakt zoals plastic tafels en stoelen. Er is dus eigenlijk helemaal geen sprake van recyclen maar van ‘downcyclen’.

Nu verschijnen er dagelijks artikelen van wetenschappers of bedrijven die in staat zijn bijvoorbeeld het CO2 uit de atmosfeer direct om te zetten in plastic of uit biologisch afval als tomatenschillen plastic te vervaardigen. Dit nieuws wordt altijd triomfantelijk gebracht, we hebben immers geen olie meer nodig en we halen ook nog eens CO2 uit de atmosfeer. Toch maakt het naar mijn idee weinig uit voor de toename van plastic objecten en afval of deze nu gefabriceerd worden uit gassen uit de atmosfeer, tomatenschillen of olie. Het blijft een toename van plastic zolang er nog stortplaatsen bestaan. Dat is niet wenselijk. Deze bedrijven en wetenschappers kunnen zichzelf daarmee een ‘groen’ label opplakken, maar dat verdienen ze eigenlijk niet. Ze lopen vooruit op het feit dat olie en andere grondstoffen opraken, maar de producten die ze willen maken zijn zeker niet ‘groen’ te noemen.

Hoewel het idee van een circulaire economie reeds zo’n 30 jaar geleden intrede deed is er nog weinig aan gedaan dit te concretiseren. Wanneer men het heeft over ‘circular economy’, dan betreffen de voorbeelden vaak het effectief recyclen van voedselresten en het omzetten daarvan in biogas. Dit is natuurlijk een mooi streven, maar betreft niet het probleem van plastic. De wil om van ‘zero waste to landfill’, ofwel naar ‘nul afval naar stortplaats’ te gaan is er blijkbaar wel, maar het moet ook economisch haalbaar zijn. Het is niet genoeg schoon grond- of oppervlaktewater of schone oceanen en stranden te willen bereiken, ofwel de intrinsieke waarden van de natuur te willen behouden, maar ons systeem vereist dat het economisch rendabel is. Dit betekent vaak dat overal een prijskaartje aan gehangen wordt. Een ecosysteem kan nu ook al uitgedrukt worden in geld. De schade van plastic aan de oceanen wordt geschat op 13 miljard dollar en men denkt dat dit een onderschatting is. De vraag is of het uitdrukken in geld niet de intrinsieke waarde die wij hechten aan schone zeeën en stranden bijvoorbeeld, tenietdoet. Volgens George Monbiot bestaat er het risico dat diegenen met macht uiteindelijk, op basis van de economische waarden, beslissen wat er met onze natuurgebieden gebeurt.

Hier volgt een bijna anderhalf durende lezing van George Monbiot, die, na een fervent milieu-activist te zijn geweest, nu boeken schrijft over het milieu en de mogelijkheid beschrijft door introductie van wilde dieren in onze ‘tamme’ en kale ecosystemen gezondere ecosystemen te creëren. In deze lezing beschouwt hij de risico’s van de politieke en economische dominantie van het gebied dat van oudsher bij linkse groene partijen hoorde. Het is een bijzonder interessante lezing die dateert uit mei 2014 en dus zijn laatste beschouwingen vertegenwoordigt.

 

Plastic afval, we zitten ermee

Er bestaat bijzonder veel informatie op het net over plastic, de vervuiling door plastic afval en het product als bron voor recycling. Er is al zo lang door mensen aan gewerkt en gestudeerd dat het onmogelijk is daar een beknopt verhaal over te houden. Al zoekende kom je heel wat informatie tegen. Eén artikel van 20 juni 2014 uit Waste Management World beschrijft hoe in Europa slechts 12% van het plastic gerecycled wordt en nog steeds 38% naar stortplaatsen gaat omdat er niet genoeg capaciteit zou zijn al het plastic te recyclen. Uit de resterende hoeveelheid wordt energie opgewekt voor centrales. Deze percentages zijn zeer verontrustend. Stortplaatsen zijn ecologische rampen, ze produceren methaan-gassen en ook al wordt de bodem ervan afgeschermd van het omliggende terrein, dan vinden er nog lekkages plaats die de bodem, het grondwater en het oppervlaktewater verontreinigen. Dat het percentage voor recycling zo laag ligt is nogal ontmoedigend voor de brave burger die zijn plastic afval netjes scheidt van de rest.

Recycling van plastic is eigenlijk een verkeerde term want de cirkel is niet compleet. Het wegwerpplastic zoals flessen, plastic zakken en wegwerp-picknick artikelen wordt omgesmolten tot andere producten zoals plastic stoelen en tafels. Er worden dus bijvoorbeeld niet opnieuw flessen van gemaakt maar andere producten. Recyclen van plastic kost veel meer energie dan het recyclen van andere afvalproducten zoals glas en metaal omdat het plastic onder hoge temperaturen gedepolymeriseerd dient te worden om er vervolgens pellets van te produceren die opnieuw gebruikt kunnen worden. Er gaat ook een kostbare procedure aan vooraf van het sorteren van de verschillende soorten plastic en kleuren plastic tot het wassen ervan.

We zouden elk stuk plastic dat door onze handen gaat moeten beschouwen als een bron voor nieuwe plastic producten en zouden het zeker niet zomaar moeten dumpen bij ander afval of op straat of in de berm gooien.

De plasticindustrie benadrukt dat plastic folie zoals dat om onze groenten zit het voordeel heeft deze groenten langer vers te houden. Daarmee zouden we voorkomen ons voedsel te verspillen door het weg te gooien wanneer het zo snel bedorven is. Een in plastic verpakte komkommer roept weerstand bij de consument op, maar PlasticsEurope, een associatie van producenten van plastic ziet dit als een ecologisch verantwoorde verpakking omdat wij zodoende minder voedsel weggooien zegt een vertegenwoordigster in een interview (youtube). De supermarkten kunnen ze zo ook langer in hun schappen laten liggen.

Er wordt aan gewerkt het percentage gerecycled plastic te verhogen en men zou helemaal van de stortplaatsen af willen, maar daarbij gaat het over te bereiken doelen binnen 2020 of 2030. Dat is wel erg laat. Aangezien de plasticindustrie hoe dan ook op volle toeren blijft draaien om van olieproducten ons wegwerpplastic te maken is het waarschijnlijk dat we, als we al het wegwerpplastic zouden recyclen op de huidige manier, straks in een plastic wereld leven.

Hier volgt een 10 minuten durende TEDtalk uit 2011 van Mike Biddle over het recyclen van plastic.

De afbraak van plastic

Er is de laatste tijd veel nieuws over plastic en de vervuiling dat dit product veroorzaakt in het bijzonder in de oceaan. Er wordt langs stranden opgeruimd en gewerkt aan methodes zoals die van The Ocean Cleanup om het plastic in de oceanen op te ruimen. (Zie ook het bericht van Gert Korthof). Op de recent gehouden internationale conferentie “Our Ocean 2014” georganiseerd door John Kerry werd er ruim aandacht aan geschonken. Veel van het ‘macroscopische’ plastic verstrikt immers de zeedieren of wordt door ze verward met voedsel. Dit bekopen ze vervolgens met een vreselijke dood.

Het ‘macroscopische’ plastic heeft ook de tendens onder invloed van mechanische erosie en UV-licht te vervallen in ‘microscopisch’ plastic of microplastics. Deze microscopische deeltjes worden vervolgens door zooplankton opgenomen. Het zooplankton staat aan de basis van de voedselketen waardoor dit plastic in vissen en vogels terecht komt. Zo komt het uiteindelijk terecht in ons bord.

Een nieuwe studie laat zien dat er verschillende micro-organismen in de oceaan leven die zich associëren met dit plastic. Ze gaan er aan vast zitten, verzwaren dit drijvende plastic waardoor het naar de bodem zakt. Dit zou kunnen verklaren waarom er tot nu toe minder plastic in de oceanen gevonden is dan men zou verwachten. De studie laat zien dat sommige van deze organismen het microplastic lijken aan te vreten. Het gaat daarbij om diatomeeën. In een eerdere studie uit 2011 in Science bleek al dat ook bacteriën plastic lijken te degraderen. Daarin concludeerde men dat er sprake lijkt te zijn van een zogenaamde ‘plastisphere’ ofwel een kleine communiteit van bacteriën en eencellige algen. De mogelijke afbraak van plastic zou een tweede reden kunnen zijn waarom men minder plastic terugvindt dan verwacht.

Diatomeeën (groen) en potentiële plastic-etende bacterien (paars) op een stukje plastic afval.

Diatomeeën (groen) en potentiële plastic-etende bacterien (paars) op een stukje plastic afval. Credits: Julia Reisser en Jeremy Shaw

Recent (2014) verscheen er een review over plastic afbrekende bacteriën. Er wordt in gesteld dat deze bacteriën inderdaad in staat zijn om polyethyleen (het meest voorkomende plastic) af te breken. Het lijkt erop dat deze lange koolstofketens onder invloed van erosie en UV-licht gereduceerd worden waardoor ze van 10 tot 50 koolstofatomen bevatten. In deze toestand kunnen ze door de bacteriën aangetast worden. Welke enzymen daar precies voor verantwoordelijk zijn is nog niet duidelijk. Maar het lijkt wel degelijk te gaan om een heus metabolisme waarbij de koolstof uit het polyethyleen in de Krebscyclus terecht zou komen. Experimenten met radioactief gemarkeerd polyethyleen zouden dit moeten uitwijzen. Het is te hopen dat dit snel uitgezocht wordt.

Uit: Livescience (Julia Reisser)
NatureNews over het artikel in Science
International Biodeterioration & Biodegradation: Review (2014)

 

Epigenetica wordt sexy

Van de tong (vis; Cynoglossus semilaevis) is de sequentie van het genoom bestudeerd en vastgesteld. De studie concentreerde zich vervolgens op de geslachtschromosomen. Deze zijn relatief recent ontstaan in deze soort vis. De sekse van het dier wordt bepaald door Z en W chromosomen waarbij de vrouwtjes ZW zijn en de mannetjes ZZ, net als bij de vogels. Deze chromosomen bij de tong lijken bijzonder veel op die van de kip. Ze komen voort uit een protochromosoom dat in andere vissen een autosomaal (niet geslachts) chromosoom gebleven is.

Vrouwtje (boven) en mannetje (onder)

Vrouwtje (boven) en mannetje (onder)

De onderzoekers hebben aangetoond dat er ook pseudomannetjes geboren kunnen worden. Dit gebeurt in de natuur wel vaker onder invloed van voornamelijk temperatuur. Deze pseudomannetjes zijn genetisch mannetjes, maar zijn fenotypisch vruchtbare vrouwtjes. In dit geval konden ze vaststellen dat het gen dmrt1 (een transcriptiefactor) reguleert welke sekse het dier zal hebben. Het gen bevindt zich op het Z chromosoom. De promotor van dit gen is normaal in vrouwtjes (ZW) sterk gemethyleerd waardoor het gen niet of nauwelijks tot expressie komt. In mannetjes (ZZ) daarentegen is de promotor nauwelijks gemethyleerd en komt het gen ruim tot expressie. In de pseudomannetjes (ZW) komt het gen ook tot expressie omdat ook hier dmrt1 nauwelijks gemethyleerd is. De ommekeer van sekse gebeurt wanneer de embryo’s geïncubeerd worden bij hogere temperaturen (28°C i.p.v. 22°C). Dit blijkt allemaal mogelijk dankzij de graad van methylatie van de promotor van het gen dmrt1. Het is belangrijk te onderstrepen hoe direct de invloed van de omgeving kan zijn op een zo fundamenteel fenotype bij deze gewerveleden.

Het meest interessante deel is dat de pseudomannetjes nakomelingen voortbrengen die ook een ommekeer van geslacht laten zien bij een lage temperatuur (22°C). Dit zou betekenen dat de methylatie doorgegeven wordt aan de volgende generatie.

Er zijn meerdere voorgaande blogs die epigenetica behandelen waarin de overerving van methylatie bediscussieerd wordt (1, 2). Deze studie is wel een erg overtuigend voorbeeld van hoe epigenetische markering als methylatie doorgegeven kan worden aan de volgende generatie. Het blijft natuurlijk ook mogelijk dat er hormonen in het spel zijn die via de eicel doorgegeven worden aan het nageslacht.

h/t to Mauro Mandrioli

Uit: Nature Genetics; Pikaia

De rol van epigenetica en stress

Experiment #2 toont aan dat stressgevoeligheid niet genetisch maar epigenetisch is. (Jay Smith DISCOVER)

Epigenetica bestudeert de moleculaire veranderingen op (=-epi) het DNA. Het is een onderwerp waar veel discussie over bestaat aangezien deze veranderingen door velen als erfelijk worden beschouwd. Dit zou betekenen dat deze alteraties van het DNA ook doorgegeven worden aan de volgende generatie. In een voorgaand blog werd dit al behandeld naar aanleiding van een artikel in Cell dat aantoonde dat methylatie van het DNA, de belangrijkste factor, zo goed als gewist wordt in de eerste stadia van het embryo. Hoe is het dan mogelijk dat sommige eigenschappen die geen genetische basis hebben toch doorgegeven lijken te worden?

Er verscheen recent een interessant overzicht over epigenetica en stress. Dit artikel in Discover Magazine geeft niet precies aan of het doorgeven van de kenmerken aan de volgende generatie werkelijk plaatsvindt. Er worden veel voorbeelden aangehaald van eigenschappen die lijken samen te hangen met blootstelling van de moeder en zelfs grootmoeder aan honger of alcoholmisbruik. Maar het is daarin niet duidelijk of het de zwangere moeder is die blootgesteld werd aan chemicaliën of traumatische gebeurtenissen of dat ze reeds voor de bevruchting in aanraking kwam met deze factoren.

Het interessantste gedeelte uit dit overzichtsartikel betreft experimenten met muizen, uitgevoerd door Meaney en Szyf. Het bleek al in de jaren 50 dat door mensen geaaide muizen veel meer zorg hadden voor hun jongen. Meaney en Szyf onderzochten dit en het bleek dat hoe meer de muizenmoeder zich bezig hield met verzorging en likken van de kroost, hoe minder stress hormonen er vervolgens aanwezig zijn in de volwassenen van deze eerste generatie.

Er bleken verschillen te zijn op niveau van het DNA, maar niet op de sequentie zelf als wel bovenop het DNA. Deze epigenetische veranderingen kunnen bestaan uit methylatie van Cytosine (één van de 4 nucleotiden van het DNA) maar ook uit methylatie en acetylatie van de histonen. Daarbij onderdukt methylatie de expressie van de genen. Dus hoe sterker een gen gemethyleerd is hoe minder het tot uitdrukking komt.

Werden verzorgende moeders vergeleken met ‘slechte’ moeders dan bleken de genen voor de glucocorticoïd receptor sterker gemethyleerd te zijn in de ‘slechte’ moeders. De receptoren worden in de ‘slechte’ moeders minder afgeschreven en de volgende generatie is nerveuzer. Om aan te tonen dat deze resultaten niet toe te schrijven waren aan de genen zelf, werden de babymuizen verwisseld. De babymuizen van verzorgende moeders kwamen terecht bij de onverschillige moeders en groeiden op als nerveuse volwassen en de babymuizen van de onverschillige moeders groeiden op als rustige muizen bij hun verzorgende adoptieve moeders. Nu kwam het erop op aan te onderzoeken of de methylatie inderdaad verantwoordelijk was voor dit gedrag. Er werd daartoe Trichostatin A geïnjecteerd in de breinen van de muizen. Dit goedje verwijdert methylgroepen en alle dieren gedroegen zich rustig.

Het artikel “Epigenetic programming by maternal behavior,” werd door Meaney and Szyf in Juni 2004 gepubliceerd in het wetenschapsblad Nature Neuroscience.

Let wel, het gaat hier om postnatale erfelijkheid, dus niet om werkelijke erfelijkheid via de geslachtscellen. Het is het gedrag van de moeder dat in de babymuizen epigenetische veranderingen veroorzaakt.

Een aantal studies toonde aan dat zelfmoordplegers een hoge methylatie van bepaalde genen in de hippocampus hebben, een breingebied verantwoordelijk voor geheugen en reactie op stress. Waren de zelfmoordslachtoffers als kinderen misbruikt dan vond men in de hersenen een overmaat aan methylatie.

Afgelopen jaar publiceerde Szyf weer een studie over 14 kinderen in een weeshuis en 14 kinderen van biologische ouders. Er werd (in het bloed) duidelijk meer methylatie gevonden voornamelijk in genen die belangrijk zijn voor communicatie en de ontwikkeling van de hersenen.

Nestler toonde aan dat mannetjesmuizen die blootstonden aan stress als gevolg van gevechten en ‘pesten’ babymuizen verwekten die daarna ook stressgevoelig waren. De vaders kwamen nooit in contact met de kleine muizen. Vooralsnog is voor dit resultaat geen verklaring. Tot nu toe is namelijk aangetoond dat de methylatie in de geslachtscellen uitgewist wordt, ook al zou dit wissen niet perfect zijn en zou een gen eraan kunnen ontsnappen.

Het lijkt erop dat stress bij de moeder een belangrijke factor is in het gedrag van de kroost. Het is al langer bekend dat goede zorg belangrijk is in de opvoeding ook bij de mens. Ziekten als depressie, angst en post-traumatische stress zouden genezen kunnen worden met medicijnen die de graad van methylatie in het brein beïnvloeden. Het zal wel uiterst lastig zijn om niet ook de ‘normale’ methylatie van andere genen aan te tasten.

Uit: DiscoverMagazine.com

SangueVivo

Ancora solo un battito in più

Microplastics

INTERREG MICRO PROJECT

Scientia Salon

a webzine about philosophy and science

Infinite forme bellissime e meravigliose

si sono evolute e continuano a evolversi

Vita da simbionte

perché collaborare è talvolta meglio che combattere

Meneer Opinie

Altijd een mening, maar niet altijd gehinderd door kennis van zaken

The Cambrian Mammal

An evo-devo geek's scientific meanderings

Evolutie blog

bij dezen en genen

The Finch and Pea

The Public House for Science...

voelsprieten

* wonder van het alledaagse *

the aphid room

All about aphids... not simply bugs|

kuifjesimon

Just another WordPress.com site

The Amazing Comics Men

Comics by Dutch cartoonists Jan the Stripman & Wim the Mysterious Helpman

Barbara Jansma

Prenten, spotprenten en schilderijen

Glaswerk

Ongepoetst en uit de hand

Aad Verbaast

te gek voor woorden eigenlijk

Antoinette Duijsters

Een andere WordPress.com site

Volg

Ontvang elk nieuw bericht direct in je inbox.

%d bloggers like this: